E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Vector Magnetic Fields and Electric Currents from the Imaging Vector Magnetograph View all abstracts by submitter

Jing Li   Submitted: 2008-11-10 13:06

First, we describe a general procedure to produce high quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. Two IVM effects are newly discussed and taken into account: (1) the central wavelength of the Fabry-Perot is found to drift with time as a result of undiagnosed thermal or mechanical instabilities in the instrument; (2) the Stokes V-sign convention built into the IVM is found to be opposite to the conventional definition used in the study of radiative transfer of polarized radiation. At the spatial resolution 2x2, the Stokes Q,U,V uncertainty reaches ~0.001-0.0005 in time-averaged data over 1-hour in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5, the resulting uncertainties are on the order of 10 G for the longitudinal fields, 40 G for the transverse field strength and 9 degree for the magnetic azimuth. The magnetic field inversion used in this work is the ``Triplet'' code, which was developed and implemented in the IVM software package by the late Barry J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |J_z|, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 20 June 2002) while the other is a more complex, quadrupolar region (NOAA10030 observed on 15 July 2002). We use a calculation that does not require disambiguation of 180n degree in the transverse field directions. The |J_z| uncertainty is on the order of ~7.0 mA m^-2. The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1-2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.

Authors: Li, J., van Ballegooijen, A.A., and Mickey, D.
Projects: None

Publication Status: ApJ February 2009 - 20 v692 issue
Last Modified: 2008-11-10 14:13
Go to main E-Print page  The Number Of Magnetic Null Points In The Quiet Sun Corona  Particle trajectories and acceleration during 3D fan reconnection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University