E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Relating Magnetic Field Strengths to Hard X-Ray Emission in Solar Flares View all abstracts by submitter

Chris Goff   Submitted: 2004-07-30 07:16

The observation of hard X-ray (HXR) emission in solar flares provides important diagnostic information about the acceleration and subsequent transport of energetic electrons in the flare process. However, while hard X-rays are thought to be emitted from the flare footpoints through thick-target bremsstrahlung interactions, the details of the transport of accelerated electrons through the solar atmosphere still remains unclear. Trapping of the electrons is one particular effect that is expected to occur as a result of the convergence of the magnetic field between the corona and the chromosphere. In this case the brightness of the HXR footpoints should be related to the strength of the magnetic field present and we would expect greater precipitation and higher HXR intensities at the footpoints with lower magnetic field strength. This relationship has been observed to hold in many flares (see Sakao, 1994) but interestingly the opposite relationship, where the stronger HXR source is found at the stronger magnetic field region, has also been observed in an event studied by Asai et al. 2002. Using Data from Yohkoh's Hard X-Ray Telescope (HXT) and SOHO's Michelson Doppler Imager (MDI) we have studied the magnetic field strengths at the footpoints of a sample of 32 flares and have compared them to the hard X-ray brightness to determine whether the expected ratios are seen. We find that contrary to the expected relationship the brighter HXR footpoint is found in the region of stronger magnetic field in approximately one third of our sample of events. We discuss the implications of these results in terms of the transport mechanisms.

Authors: C. P. Goff, S. A. Matthews, L. van Driel-Gesztelyi, L. K. Harra
Projects: Yohkoh-HXT

Publication Status: A &A Published
Last Modified: 2004-08-09 07:25
Go to main E-Print page  Catastrophic alpha quenching alleviated by helicity flux and shear  Soft X-ray heating of the solar chromosphere during the gradual phase of two solar flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University