E-Print Archive

There are 4102 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Inconvenient Truth About Coronal Dimmings View all abstracts by submitter

Scott McIntosh   Submitted: 2008-11-24 13:46

We investigate the occurrence of a CME-driven coronal dimming using unique high resolution spectral images of the corona from the Hinode spacecraft. Over the course of the dimming event we observe the dynamic increase of non-thermal line broadening in the 195.12? emission line of Fe XII as the corona opens. As the corona begins to close, refill and brighten, we see a reduction of the non-thermal broadening towards the pre-eruption level. We propose that the dynamic evolution of non-thermal broadening is the result of the growth of Alfvén wave amplitudes in the magnetically open rarefied dimming region, compared to the dense closed corona prior to the CME. We suggest, based on this proposition, that, as open magnetic regions, coronal dimmings must act just as coronal holes and be sources of the fast solar wind, but only temporarily. Further, we propose that such a rapid transition in the thermodynamics of the corona to a solar wind state may have an impulsive effect on the CME that initiates the observed dimming. This last point, if correct, poses a significant physical challenge to the sophistication of CME modeling and capturing the essence of the source region thermodynamics necessary to correctly ascertain CME propagation speeds, etc.

Authors: Scott W. McIntosh
Projects: Hinode/EIS

Publication Status: Submitted ApJ - rerouted to ApJL
Last Modified: 2008-11-25 05:50
Go to main E-Print page  Solar Radio Spikes in 2.6-3.8 GHz for 13 December 2006 Event  The Solar Wind at 1 AU During the Declining Phase of Solar Cycle 23: Comparison of 3D Numerical Model Results with Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University