E-Print Archive

There are 4525 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Multi-wavelength observations and modelling of a canonical solar flare View all abstracts by submitter

Claire Raftery   Submitted: 2008-12-01 09:12

This paper investigates the temporal evolution of temperature, emission measure, energy loss and velocity in a C-class solar flare from both an observational and theoretical perspective. The properties of the flare were derived by following the systematic cooling of the plasma through the response functions of a number of instruments - RHESSI (5 MK), GOES-12 (5-30 MK), TRACE 171A (1 MK) and CDS (0.03-8 MK). These measurements were studied in combination with simulations from the 0-D Enthalpy Based Thermal Evolution of Loops (EBTEL) model. At the flare on-set, upflows of ~90 km s-1 and low level emission were observed in Fe XIX, consistent with pre-flare heating and gentle chromospheric evaporation. During the impulsive phase, upflows of ~80 km s-1 in Fe XIX and simultaneous downflows of ~20 km s-1 in He I and O V were observed, indicating explosive chromospheric evaporation. The plasma was subsequently found to reach a peak temperature of ~13 MK in approximately 10 minutes. Using EBTEL, conduction was found to be the dominant loss mechanism during the initial ~300s of the decay phase. It was also found to be responsible for driving gentle chromospheric evaporation during this period. As the temperature fell below ~8 MK, and for the next ~4,000s, radiative losses were determined to dominate over conductive losses. The radiative loss phase was accompanied by significant downflows of <40 km s-1 in O V. This is the first extensive study of the evolution of a canonical solar flare using both spectroscopic and broad-band instruments in conjunction with a hydrodynamic model. While our results are in broad agreement with the standard flare model, the simulations suggest that both conductive and non-thermal beam heating play important roles in heating the flare plasma during the impulsive phase of at least this event.

Authors: Claire L. Raftery, Peter T. Gallagher, Ryan O. Milligan, James A. Klimchuk

Publication Status: A&A (accepted)
Last Modified: 2008-12-02 09:30
Go to main E-Print page  The Role of Transient Brightenings in Heating the Solar Corona  On the validity of nonlinear Alfven resonance in space plasmas  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University