E-Print Archive

There are 4293 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

On the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere View all abstracts by submitter

Steven R Cranmer   Submitted: 2004-10-27 08:17

We present a comprehensive model of the global properties of Alfvén waves in the solar atmosphere and the fast solar wind. Linear non-WKB wave transport equations are solved from the photosphere to a distance past the orbit of the Earth, and for wave periods ranging from 3 seconds to 3 days. We derive a radially varying power spectrum of kinetic and magnetic energy fluctuations for waves propagating in both directions along a superradially expanding magnetic flux tube. This work differs from previous models in three major ways. (1) In the chromosphere and low corona, the successive merging of flux tubes on granular and supergranular scales is described using a two-dimensional magnetostatic model of a network element. Below a critical flux-tube merging height the waves are modeled as thin-tube kink modes, and we assume that all of the kink-mode wave energy is transformed into volume-filling Alfvén waves above the merging height. (2) The frequency power spectrum of horizontal motions is specified only at the photosphere, based on prior analyses of G-band bright point kinematics. Everywhere else in the model the amplitudes of outward and inward propagating waves are computed with no free parameters. We find that the wave amplitudes in the corona agree well with off-limb nonthermal line-width constraints. (3) Nonlinear turbulent damping is applied to the results of the linear model using a phenomenological energy loss term. A single choice for the normalization of the turbulent outer-scale length produces both the right amount of damping at large distances (to agree with in situ measurements) and the right amount of heating in the extended corona (to agree with empirically constrained solar wind acceleration models). In the corona, the modeled heating rate differs by more than an order of magnitude from a rate based on isotropic Kolmogorov turbulence.

Authors: S. R. Cranmer and A. A. van Ballegooijen
Projects: None

Publication Status: ApJS, in press (February 2005)
Last Modified: 2004-10-27 08:17
Go to main E-Print page  The kinetic effects of electron beam precipitation and resulting hard X-ray intensity in solar flares  Quantifying Magnetic Reconnection and the Heat it Generates  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Neutralized Electric Current of Active Regions Explained as a Projection Effect
The effect of magnetic field on the damping of slow waves in the solar corona
Soft X-Ray Observations of Quiescent Solar Active Regions using Novel Dual-zone Aperture X-ray Solar Spectrometer (DAXSS)
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University