E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Imaging Spectroscopy on Preflare Coronal Nonthermal Sources Associated with the 2002 July 23 Flare View all abstracts by submitter

Ayumi Asai   Submitted: 2009-01-22 19:24

We present a detailed examination on the coronal nonthermal emissions during the preflare phase of the X4.8 flare that occurred on 2002 July 23. The microwave (17 GHz and 34 GHz) data obtained with Nobeyama Radioheliograph, at Nobeyama Solar Radio Observatory and the hard X-ray (HXR) data taken with {it Reuven Ramaty High Energy Solar Spectroscopic Imager} obviously showed nonthermal sources that are located above the flare loops during the preflare phase. We performed imaging spectroscopic analyses on the nonthermal emission sources both in microwaves and in HXRs, and confirmed that electrons are accelerated from several tens of keV to more than 1~MeV even in this phase. If we assume the thin-target model for the HXR emission source, the derived electron spectral indices (sim 4.7) is the same value as that from microwaves (sim 4.7) within the observational uncertainties, which implies that the distribution of the accelerated electrons follows a single power-law. The number density of the microwave-emitting electrons is, however, larger than that of the HXR-emitting electrons, unless we assume low ambient plasma density of about 1.0 imes 109~cm-3 for the HXR-emitting region. If we adopt the thick-target model for the HXR emission source, on the other hand, the electron spectral index (sim 6.7) is much different, while the gap of the number density of the accelerated electrons is somewhat reduced.

Authors: Ayumi Asai, Hiroshi Nakajima, Masumi Shimojo, Takaaki Yokoyama, Satoshi Masuda, Säm Krucker
Projects: RHESSI

Publication Status: ApJ (accepted)
Last Modified: 2009-01-23 09:36
Go to main E-Print page  Acoustic wave propagation in the solar sub-photosphere with localised magnetic field concentration: effect of magnetic tension  Are Coronal Loops Isothermal or Multithermal? Yes!  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University