E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Equilibrium and observational properties of line-tied twisted flux tubes View all abstracts by submitter

Guillaume Aulanier   Submitted: 2004-11-26 09:08

We describe a new explicit three-dimensional magnetohydrodymanic code, which solves the standard zero-beta MHD equations in cartesian geometry, with line-tied conditions at the lower boundary and open conditions at the other ones. Using this code in the frame of solar active regions, we simulate the evolution of an initially potential and concentrated bipolar magnetic field, subject to various sub-Alfvénic photospheric twisting motions which preserve the initial photospheric vertical magnetic field. Both continuously driven and relaxation runs are performed. Within the numerical domain, a steep equilibrium curve is found for the altitude of the apex of the field line rooted in the vortex centers as a function of the twist. Its steepness strongly depends on the degree of twist in outer field lines rooted in weak field regions. This curve fits the analytical expression for the asymptotic behaviour of force-free fields of spherical axisymmetric dipoles subject to azimuthal shearing motions, as well as the curve derived for other line-tied twisted flux tubes reported in previous works. This suggests that it is a generic property of line-tied sheared/twisted arcades. However, contrary to other studies we never find a transition toward a non-equilibrium within the numerical domain, even for twists corresponding to steep regions of the equilibrium curve. The calculated configurations are analyzed in the frame of solar observations. We discuss which specific conditions are required for the steepness of the generic equilibrium curve to result in dynamics which are typical of both fast and slow CMEs observed below 3 Ro. We provide natural interpretations for the existence of asymmetric and multiple concentrations of electric currents in homogeneoulsy twisted sunspots, due to the twisting of both short and long field lines. X-ray sigmoids are reproduced by integrating the Joule heating term along the line-of-sight. These sigmoids have inverse-S shapes associated with negative force-free parameters α which is consistent with observed rules in the northern solar hemisphere. We show that our sigmoids are not formed in the main twisted flux tube, but rather in an ensemble of low-lying sheared and weakly twisted field lines, which individually never trace the whole sigmoid, and which barely show their distorded shapes when viewed in projection. We find that, for a given bipolar configuration and a given twist, neither the α nor the altitude of the lines whose envelope is a sigmoid depends on the vortex size.

Authors: Aulanier, G ; Démoulin, P. and Grappin; R.
Projects: None

Publication Status: A&A (in press)
Last Modified: 2004-11-26 09:08
Go to main E-Print page  Particle-In-Cell simulations of circularly polarised Alfven wave phase mixing: a new mechanism for electron acceleration in collisionless plasmas  Quasi-Periodicity in global solar radio flux at metric wavelengths during Noise Storms  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University