E-Print Archive

There are 4249 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

On the Relationship between the Continuum Enhancement and Hard X-ray Emission in a White-Light Flare View all abstracts by submitter

Qingrong Chen   Submitted: 2004-12-08 22:20

We investigate the relationship between the continuum enhancement and the hard X-ray (HXR) emission of a white-light flare on 2002 September 29. By reconstructing the RHESSI HXR images in the impulsive phase, we find two bright conjugate footpoints (FPs) on the two sides of the magnetic neutral line. Using the thick-target model and assuming a low-energy cutoff of 20 keV, the energy fluxes of non-thermal electron beams bombarding FPs A and B are estimated to be 1.0 1010 and 0.8 1010 ergs/cm2/s, respectively. However, the continuum enhancement at the two FPs is not simply proportional to the electron beam flux. The continuum emission at FP B is relatively strong with a maximum enhancement of about 8% and correlates temporally well with the HXR profile; however, that at FP A is less significant with an enhancement of only about 4-5%, regardless of the relatively strong beam flux. By carefully inspecting the Hα line profiles, we ascribe such a contrast to different atmospheric conditions at the two FPs. The Hα line profile at FP B exhibits a relatively weak amplitude with a pronounced central reversal, while the profile at FP A is fairly strong without a visible central reversal. This indicates that in the early impulsive phase of the flare, the local atmosphere at FP A has been appreciably heated and the coronal pressure is high enough to prevent most high-energy electrons from penetrating into the deeper atmosphere; while at FP B, the atmosphere has not been fully heated, the electron beam can effectively heat the chromosphere and produce the observed continuum enhancement via the radiative backwarming effect.

Authors: Q. R. Chen and M. D. Ding
Projects: RHESSI

Publication Status: accepted for publication in ApJ
Last Modified: 2004-12-08 22:20
Go to main E-Print page  High Frequency Alfven Waves in Multi-ion Coronal Plasma  The Association of Big Flares and Coronal Mass Ejections: What Is the Role of Magnetic Helicity?  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Ambipolar diffusion in the Bifrost code
Modeling the quiet Sun cell and network emission with ALMA
Clustering of fast Coronal Mass Ejections during the solar cycles 23 and 24 and implications for CME-CME interactions
Magnetic and Velocity Field Topology in Active Regions of Descending Phase of the Solar Cycle 23
Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection
Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME
A new method for estimating global coronal wave properties from their interaction with solar coronal holes
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
Multilevel Observations of the Oscillations in the First Active Region of the New Cycle
Standing MHD Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Plasma Environment: Surface Waves
A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Lyman α Variability During Solar Flares Over Solar Cycle 24 Using GOES-15/EUVS-E
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University