E-Print Archive

There are 4115 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar-Terrestrial Simulation in the STEREO Era: The January 24-25, 2007 Eruptions View all abstracts by submitter

No Lugaz   Submitted: 2009-03-13 18:26

The SECCHI instruments aboard the recently launched STEREO spacecraft enable for the first time the continuous tracking of coronal mass ejections (CMEs) from the Sun to 1 AU. We analyze line-of-sight observa- tions of the January 24-25, 2007 CMEs and fill the 20-hour gap in SECCHI coverage in January 25 by performing a numerical simulation using a three- dimensional magneto-hydrodynamic (MHD) code, the Space Weather Modeling Framework (SWMF). We show how the observations reflect the interaction of the two successive CMEs with each other and with the structured solar wind. We make detailed comparison between the observations and synthetic images from our model, including time-elongation maps for several position angles. Having numerical simulations to disentangle observational from physical effects, we are able to study the three-dimensional nature of the ejections and their evolution in the inner heliosphere. This study reflects the start of a new era where, on one hand, models of CME propagation and interaction can be fully tested by using heliospheric observations and, on the other hand, observations can be better interpreted by using global numerical models.

Authors: N. Lugaz, A. Vourlidas, I. I. Roussev, H. Morgan
Projects: None

Publication Status: Solar Physics (recommended for acceptance)
Last Modified: 2009-03-14 14:26
Go to main E-Print page  Observations of conduction driven evaporation in the early rise phase of solar flares  Time-Distance Seismology of the Solar Corona with CoMP  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling
The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations
Large-amplitude quasi-periodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA
Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations
Characteristics of solar wind rotation
A Study of Pre-Flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes
New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections
Reversed dynamo at small scales and large magnetic Prandtl number
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University