E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The spectral evolution of impulsive solar X-ray flares. II.Comparison of observations with models View all abstracts by submitter

Paolo Grigis   Submitted: 2005-01-20 08:10

We study the evolution of the spectral index and the normalization (flux) of the non-thermal component of the electron spectra observed by RHESSI during 24 solar hard X-ray flares. The quantitative evolution is confronted with the predictions of simple electron acceleration models featuring the soft-hard-soft behaviour. The comparison is general in scope and can be applied to different acceleration models, provided that they make predictions for the behavior of the spectral index as a function of the normalization. A simple stochastic acceleration model yields plausible best-fit model parameters for about 77% of the 141 events consisting of rise and decay phases of individual hard X-ray peaks. However, it implies unphysically high electron acceleration rates and total energies for the others. Other simple acceleration models such as constant rate of accelerated electrons or constant input power have a similar failure rate. The peaks inconsistent with the simple acceleration models have smaller variations in the spectral index. The cases compatible with a simple stochastic model require typically a few times 1036 electrons accelerated per second at a threshold energy of 18 keV in the rise phases and 24 keV in the decay phases of the flare peaks.

Authors: Grigis, P. C. and Benz, A. O.
Projects: RHESSI

Publication Status: accepted by A&A
Last Modified: 2005-01-20 08:10
Go to main E-Print page  Regularized Energy-Dependent Solar Flare Hard X-Ray Spectral Index  Astrophysics in 2004 - Section 2: The Sun  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University