E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Spectroscopic Observations of Hot Lines Constraining Coronal Heating in Solar Active Regions View all abstracts by submitter

Spiros Patsourakos   Submitted: 2009-03-24 09:03

EUV observations of warm coronal loops suggest that they are bundles of unresolved strands that are heated impulsively to high temperatures by nanoflares. The plasma would then have the observed properties (e.g., excess density compared to static equilibrium) when it cools into the 1-2 MK range. If this interpretation is correct, then very hot emission should be present outside of proper flares. It is predicted to be vey faint, however. A critical element for proving or refuting this hypothesis is the existence of hot, very faint plasmas which should be at amounts predicted by impulsive heating. We report on the first comprehensive spectroscopic study of hot plasmas in active regions. Data from the EIS spectrometer on Hinode were used to construct emission measure distributions in quiescent active regions in the 1-5 MK temperature range. The distributions are flat or slowly increasing up to approximately 3 MK and then fall off rapidly at higher temperatures. We show that active region models based on impulsive heating can reproduce the observed EM distributions relatively well. Our results provide strong new evidence that coronal heating is impulsive in nature.

Authors: S. Patsourakos, J. A. Klimchuk
Projects: Hinode/EIS

Publication Status: ApJ 2009, in press
Last Modified: 2009-03-24 09:31
Go to main E-Print page  Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation  Hot Plasma in Non-Flaring Active Regions Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University