E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Spectroscopic Observations of Hot Lines Constraining Coronal Heating in Solar Active Regions View all abstracts by submitter

Spiros Patsourakos   Submitted: 2009-03-24 09:03

EUV observations of warm coronal loops suggest that they are bundles of unresolved strands that are heated impulsively to high temperatures by nanoflares. The plasma would then have the observed properties (e.g., excess density compared to static equilibrium) when it cools into the 1-2 MK range. If this interpretation is correct, then very hot emission should be present outside of proper flares. It is predicted to be vey faint, however. A critical element for proving or refuting this hypothesis is the existence of hot, very faint plasmas which should be at amounts predicted by impulsive heating. We report on the first comprehensive spectroscopic study of hot plasmas in active regions. Data from the EIS spectrometer on Hinode were used to construct emission measure distributions in quiescent active regions in the 1-5 MK temperature range. The distributions are flat or slowly increasing up to approximately 3 MK and then fall off rapidly at higher temperatures. We show that active region models based on impulsive heating can reproduce the observed EM distributions relatively well. Our results provide strong new evidence that coronal heating is impulsive in nature.

Authors: S. Patsourakos, J. A. Klimchuk
Projects: Hinode/EIS

Publication Status: ApJ 2009, in press
Last Modified: 2009-03-24 09:31
Go to main E-Print page  Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation  Hot Plasma in Non-Flaring Active Regions Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University