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Abstract

This thesis examines the magnetic topology of the solar corona. Many of the dynamic

processes in the Sun’s atmosphere are driven by the magnetic field, and so understanding

the structure of such such fields is a key step towards modelling these phenomena.

The technique of Magnetic Charge Topology (MCT) is used to determine the topologies

due to various source configurations. The balanced four-source case is completely clas-

sified, and seven distinct topological states are found. This is compared to the complete

three-source classification performed by Brown and Priest (1999a). A method is described

for extending the analysis to greater numbers of sources.

MCT is also used to discuss the creation of magnetic null points in the solar corona.

Until recently, it was tacitly assumed that any coronal nulls would have to be created by

means of a local double-separator bifurcation in the photospheric source plane. A counter-

example - the new, coronal local separator bifurcation - with five unbalanced sources is

found and analysed, and several seven-source scenarios are also discussed.

We also find that this new bifurcation plays a critical role in the Magnetic Breakout Model

for solar flares and coronal mass ejections (Antiochos et al., 1999). We provide a simple

MCT model for a flaring delta-spot region and find that a ‘breakout’ can be provoked in

several different ways.

Finally, a Monte Carlo variation on MCT is used to determine the proportion of upright

nulls in a field due to a large number of sources. By overlaying two plane topologies, we

find also the number of separators and use the result to calculate typical sizes for elemental

flux loops in the corona.
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Chapter 1

Introduction

In the beginning, when the world was new, there was no sun and the humans and ani-

mals had to hunt and gather by the light of the dim moon. One day the brolga and the

emu had a huge argument over whose babies were best. The brolga got so furious that

she stole one of the emu’s eggs which she threw into the sky. As she threw it into the

air it smashed on a few sticks. The yellow yolk burst into flames and lit up the earth.

Indigenous Australian creation myth, retold by Sarah Steele

1.1 Introduction

The solar corona is a complicated and constantly-changing layer of the Sun’s atmosphere.

Lying above the Sun’s lower atmospheric regions, the photosphere and chromosphere, it

extends far beyond even the furthest planets and into interstellar space.

Many of the Sun’s most spectacular sights are seen in the lower part of the corona: for

instance, the gigantic loop structures shown by the TRACE and Yohkoh satellites, massive

explosions such as solar flares and the eruptions of prominences that lead to huge Coronal

Mass Ejections.

All of these phenomena are magnetic in nature - that is to say, they are mainly driven

5
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by the coronal magnetic field. This field arises from a large number of intense, isolated

flux sources in the photosphere, locations where flux tubes originating in the solar interior

break through the surface.

This field, even from a handful of stationary sources, is immensely complicated. In reality,

there are many thousands of sources constantly moving around, emerging and disappear-

ing, combining and fragmenting and growing or shrinking in strength and size. We are a

long way from even a basic understanding of such a complex field.

Our approach is to try to understand the structure of relatively simple fields, in the hope

that these can be used to build up pictures of more complicated structures. We do this by

examining the topological features described later in this chapter.

In most parts of the lower corona, the magnetic energy density far exceeds any other form

of energy. From this it follows that many of the dynamic coronal events, such as flares

are driven by the magnetic field. In particular, these events are often linked to complex

configurations where several topologically distinct regions interact (Lau, 1993; Aulanier

et al., 1998; Fletcher et al., 2001).

1.2 Equations

The magnetic field is governed by the equations of magnetohydrodyamics (MHD), the

details of which can be found in any reputable MHD textbook such as Priest (1982). We

will be using in particular

� The equation of motion:��������	��
 ������������ ����� (1.1)

where � is the plasma density, � the plasma velocity,


the plasma pressure,
�

the

electric current density, � gravity, and
�

the magnetic field;� Ampère’s law:����� � � � � � (1.2)

where �!� is magnetic permeability (assumed to be constant);
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(1.3)

� The induction equation:( �( � � ���*) � ���,+-�/.'�,01� � (1.4)

where
.

is the magnetic diffusivity, taken to be uniform.

We can then define the magnetic Reynolds number 243 by comparing the dimensions of

the terms in Equation 1.4:

25376#8 ���*) � ���,+ 8 9 . 8 �,01� 8:6 ; �=<>�. � (1.5)

where
; � and < � are typical length and velocity scales.

When the magnetic Reynolds number 2 3�?A@ , as is true nearly everywhere on the Sun,

Alfvén’s theorem applies, and the plasma is ‘frozen in’ to the magnetic field, and can

effectively move only along field lines (e.g., Priest, 1982).

Reconnection occurs when plasma is allowed to move across field lines with different

connectivity, which occurs when 243CB @ . In the corona,
. 6 @$D 0$E$F G . For 2�3 to be

sufficiently small for reconnection to occur, either the velocity or the length scale must

be very small indeed. Since coronal velocities are generally less than or of the order

of the Alfvén velocity <:H 6 @ %:I D E F G , it would seem that minuscule length scales are

required. In two dimensions, null points are the only locations for reconnection; in three

dimensions, reconnection is not confined to null points although it can occur there.

Photospheric elements, however, do not move so quickly. Most agree on velocities of

the order of < � 6 @ %KJ D E F G , so that < �ML < H . That is to say, coronal structures (which

are thought to have velocities of the same order as the photospheric movements causing

them) move in most cases far slower than the Alfvén speed, and can be considered to be

in quasi-static equilibrium - effectively, in force balance. If we neglect also gravity and

plasma pressure (reasoning that they are generally far smaller than the Lorentz force), the

equation of motion (Equation 1.1) reduces to�N��� � O
(1.6)
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This assumption (the force-free assumption) breaks down in highly dynamic events such

as the explosive phase of a flare, although it is valid for the slow build-up of energy

beforehand.

Where it is valid, it implies that the current flow is everywhere parallel to the magnetic

field, or
� � P )RQ>+S� , where P is a scalar function of position. Using Equation 1.2, this

becomes:����� � P )TQU+S� � (1.7)

generally a non-linear partial differential equation.

The form of P can, however, be chosen so as to linearise this equation. The simplest

example is P )RQU+ � %
, which gives (in conjunction with Equation 1.3) a potential field.

Another possibility is P )RQU+ � P � , which gives a linear force-free field. Analytical solu-

tions to this do exist for a given set of boundary conditions, but to discuss them here would

be something of a digression; force-free fields are discussed only in passing in Chapter 4.

1.3 Magnetic charge topology

1.3.1 Introduction to MCT

The purpose of this thesis is to study the possible topologies of (largely) simple mag-

netic fields. To do so, we use the technique of Magnetic Charge Topology or MCT (e.g.

Longcope, 1996). This involves making three main simplifying assumptions:

� Elements of photospheric flux are taken to be point sources (magnetic charges).� The charges are assumed to lie in a plane; the corona is considered to be the half-

space where VXW %
.� The field due to the charges is assumed to be potential.

These assumptions warrant further examination, not least because two of them seem un-

physical at first sight. The first assumption appears to contravene the solenoidal condition
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9�Y"'� � %
at such a source; the third seems unphysical because in a potential field����� � %

and hence (in view of Ampère’s law
����� � �-� � ) no current can flow.

It could also be argued that the second condition is unphysical because the Sun isn’t flat.

However, with a little work, all three of the assumptions can be justified. In the first

instance, the magnetic charges aren’t true monopoles, but instead representations of flux

tubes passing through the solar surface and spreading out into the corona. At a distance Z
much greater than the radius of the flux tube, the magnetic field due to it will be effectively

indistinguishable from that of a point source.

The second assumption is also permissible, as long as the area of the solar surface con-

sidered is small enough that the Sun’s curvature can be neglected. In order to obtain some

topological results, it is convenient to use the mirror corona in the half-space V�[ %
as if

it were real, although the physical conclusions apply only in the corona with VXW %
.

The final assumption, that of a potential field, such that
�\�]� � %

is more contentious. It

is believed, however, (e.g., Longcope, 1996) that the magnetic field in the solar corona is

quite close to potential - although at low altitudes, and in certain structures such as promi-

nences, this is not true. A more valid approach would be to consider a force-free field

satisfying Equation 1.7; however, this is computationally much more complicated and

in any case, using a weakly force-free field rather than a potential field is not expected

to give any new topological behaviour, although the parameter values at which bifurca-

tions (changes between topological states - see Section 1.4) occur will naturally change

depending on the exact form of P )RQU+ (Brown and Priest, 2000).

One of the computational problems with using a force-free field with boundary conditions

at V � %
is that it is possible for more than one field to satisfy the equations. This is a

topic we will return to briefly in Chapter 3.

Our other concession to
�^">� � %

is an insistence on flux balance. This is not always

made explicit. For instance, in the ‘five-source’ example of Chapter 3, a sixth, balancing

source is assumed to exist a great distance away.

Having made the above assumptions, we can then write the magnetic field explicitly at

any point in space. If there are _ sources at positions
QK` � )Ta � @cb1b$b _ + with strengths
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Q

is:��)TQU+ �
hi ekj G d e

Q 
 Q `8 Q 
 Q>` 8 J (1.8)

Armed with this information, we can consider the relative positions and orientations of the

field’s topological features: null points, spine field lines, separatrix surfaces and separator

field lines, as described in the following Section. Table 1.1 shows how these are depicted

in diagrams throughout this thesis.

1.3.2 Topological features: the magnetic skeleton

Null points are locations at which the magnetic field vanishes. Their local structure has

been examined in detail, for instance by Parnell et al. (1996), and is depicted in Fig-

ure 1.3.1. A co-ordinate system can be chosen such that the first-order linear field near a

magnetic null can normally be written as
� �ml "=Q

, where
Q � )Rn �poq� V +sr and

lt�
uv
w

x1y!zx1{ x|y!zx1} x|y!zx1~x1y �x1{ x1y �x1} x|y �x1~x|y!�x1{ x1y!�x1} x1y!�x1~
�$�
� �

uv
w @ G0 )R� 
��K� + %G0 )R��� �K� +  %% ��� 
 )��� @ +

�$�
� � (1.9)

where ��� and � � represent components of the current parallel and perpendicular to the

spine, respectively, while


and
�

are parameters of the potential field. For nearly all

cases in this thesis, we will be considering the potential situation, where �'� and � � are

equal to zero. The solenoidal condition
��"U� � %

implies that the trace of the matrix

l in Equation 1.9 vanishes, and hence so does the sum of its eigenvalues. Ignoring the

degenerate cases when one or more of the eigenvalues is equal to zero, it is clear that one

of the eigenvalues ( � G ) is of the opposite sign to the other two ( � 0 and � J ). We label their

corresponding eigenvectors as � G , � 0 and � J , respectively. These eigenvectors are crucial

to the skeleton.

The eigenvector associated with the odd-signed eigenvalue, � G , defines two isolated field

lines known as spines (Priest and Titov, 1996). If � G W %
, these are directed away from

the null point, and if � G [ %
, they are directed towards it. These field lines end (or

begin) in sources called spine sources. If a null has two distinct spine sources, it is called
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heterovertebraic; if both spines connect to the same source, the null is homovertebraic.

These types are also known as boundary and internal nulls (respectively) in the literature

(e.g., Longcope and Klapper, 2002).

Together, � 0 and � J define a fan plane. Points lying in this plane near to the null define

field lines which form a separatrix surface (also called the fan) dividing space into regions

of different connectivity: field lines on different sides of the surface either start from or

end at different sources, in fact the spine sources of the null.

If � 0 and � J are positive, the fan field lines diverge from the null point; if the eigenvalues

are negative, these field lines converge on the null. The null is called positive if � 0 and� J are both positive, or negative if both are negative. When all of the sources are located

on a plane (the photosphere), there will be a population of nulls which lie in this plane,

called photospheric nulls. A photospheric null point whose spine lies in the plane of the

sources is described as prone, whereas a photospheric null with a spine directed vertically

is called upright.

In a situation with flux balance, the field at a great distance from the sources is approxi-

mately dipolar. On a contour of sufficiently large diameter, the Kronecker-Poincaré index

of the field � will be two (Molodenskii and Syrovatskii, 1977). The Euler characteris-

tic equation � 
\� �m� � � then holds in the photospheric plane. � is the number

of potential maxima (see, for instance, Inverarity and Priest, 1999);
�

is the number of

minima, and � is the number of saddle points. Saddle points of the potential correspond

to prone nulls; maxima (respectively, minima) correspond either to positive (respectively,

negative) sources or to positive (respectively, negative) upright nulls.

This allows us to relate the numbers of sources ( � ), prone nulls ( _!� ) and upright nulls

( _!� ) by the two-dimensional Euler characteristic,

� � _ � � _ � ��� � (1.10)

when the net flux in the source plane is zero. The properties of nulls in 3D space are

governed by the 3D Euler characteristic,

�!� 
 _!� � � F 
 _ F � (1.11)

where �-� represents the number of positive or negative sources and _�� the number of

positive or negative nulls. In both of these equations, flux balance is assumed: for an
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unbalanced case, it is necessary to add a balancing source at a great distance and increase� , � � and � F accordingly.

Separators are field lines which begin at one null point and end at another. They are

the three-dimensional analogue of a two-dimensional X-point and are prime locations for

reconnection (Greene, 1988; Lau and Finn, 1990; Priest and Titov, 1996; Galsgaard and

Nordlund, 1997). Separators can also be seen as the boundary of four different regions

of connectivity - although the two definitions aren’t quite equivalent. An example will

be discussed in Section 2.6.1 in the upright null state, where the eponymous upright null

has both of its spines connecting to the same source. The separators in this case lie on

the boundary of only two connectivity regions, also called flux domains. Such separators

will be given the name half separators as opposed to proper separators which lie on the

boundary of four regions.

Continuity arguments can be used to show that a separator connects two nulls if and only

if the fan of one null is bounded in part by the spine of the other (as in Figure 1.3.3). The

proof is given in Appendix A.

A useful tool in calculating even a fairly simple topology is the domain graph (Longcope,

2001). In this, each source � e is represented by a node � e on the graph; if any field lines

connect two sources � e and �q� then the corresponding nodes � e and �=� are connected.

In conjunction with knowledge about the number of nulls, it is possible to catalogue

quite complex topologies with some confidence. The method for doing so is explained in

Chapter 2.

Longcope and Klapper (2002) found a relationship between the number of flux domains

( ��� ), separators ( � h:h ), null points ( � � ) and sources ( � ):

� � � � hUh 
 � � � � � (1.12)

although this applies to the whole of space rather than to the coronal half-space. For a

result in this region, we must differentiate between photospheric domains, which con-

tain field lines which lie in the photosphere, and purely coronal domains, which do not.

Making this distinction, we can modify the equation to:

�,� � ��� �,� � � � � hUh 
 �,� h 
 � ��� h � � � (1.13)

where �,� � is the number of photospheric domains, � � � the number of purely coronal



“weethesis”

2003/7/11

page 13�
�

�
�

�
�

�
�

13

Figure 1.1.1: Loop structures imaged by the TRACE satellite. Any document which mentions

TRACE is legally required to include such a picture.

Feature Depicted as Colouring

Null point Filled circle Red [blue] if positive, [negative].

Flux source Star Red [blue] if positive, [negative].

Spine field line Heavy solid line Red [blue] if due to positive [negative] null.

Fan field line Thin solid line Red [blue] if due to positive [negative] null.

Separator field line Heavy dashed line Various, often magenta.

Table 1.1: Legend for all topology diagrams in this thesis.



“weethesis”

2003/7/11

page 14�
�

�
�

�
�

�
�

14

x

z

y

spine

fan

Figure 1.3.2: The local structure of a magnetic null. In one direction, the field lines cluster around

an isolated field line known as the spine; perpendicular to this, the lines spread out in a fan plane.

The field lines of this fan plane form a separatrix surface, which generally divides space into regions

of different connectivity.
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Fan
Source

Null
Spine

Figure 1.3.3: Schematic diagram of a separator (dashed black line) joining two nulls (red and blue

dots). Each separatrix (thin plane) is partly bounded by the spine (thick solid line) of the other. A

proof of this is found in Appendix A.
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domains, � � h the number of photospheric nulls, � � h the number of coronal nulls and �
the number of sources.

By changing the source strengths and positions of the sources, it is possible to force a

change from one topological state to another - for instance by creating a pair of null

points, or by allowing two separatrix surfaces to intersect, giving rise to a separator.

In this work, we will examine several different types of bifurcation, in two distinct classes:

� Local bifurcations in which the number of nulls changes.

� Global bifurcations in which the structure of the field changes.

1.4 Bifurcations

In this section, we look in detail at some of the elementary bifurcations considered in

this thesis, although we will leave some of the new, more complicated bifurcations until

Chapter 3.

1.4.1 Local bifurcations

A local bifurcation is one in which a pair of nulls is created or destroyed. There are two

known simple examples, discussed by Brown and Priest (1999a) and Brown and Priest

(2001): the local separator bifurcation and the local double-separator bifurcation.

Local separator bifurcation

The local separator bifurcation (LSB) was studied in detail, and modelled analytically, by

Brown and Priest (1999a). During such a bifurcation, two null points either spontaneously

appear or collide and annihilate each other. The three-dimensional Euler characteristic

equation (Equation 1.11) insists that the two nulls be of opposite sign. If the bifurcation
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takes place in the plane - which is more usual, although Chapters 3 and 4 discuss this

further - then the two-dimensional Euler characteristic equation (Equation 1.10) forces

one of the nulls to be positive and the other negative.

The process is illustrated in Figure 1.4.4. A second-order null appears out of nothing in

the second frame; it then splits into two nulls. Eventually, the blue null will annihilate the

black null in the reverse process, leaving only the red null.

Although we have yet to find a proof, it seems likely that a local separator bifurcation

requires the black and red nulls (of the same type) to share exactly one of their spine

sources. This is based only on the absence of a counter-example. It certainly appears to

be always true.

Local double-separator bifurcation

The local double-separator bifurcation (LDSB) was analysed by Brown and Priest (2001),

who provided an analytical model for it. In it, a null point becomes a third-order null be-

fore splitting into three first-order nulls. This type of bifurcation requires a high degree of

symmetry, such as that provided by the photosphere, which provides a mirror corona forVM[ %
. It seems unlikely that an LDSB would take place anywhere other than on the pho-

tosphere, creating one coronal null (one lying above the photosphere) and a mirror image

null below the photosphere. By symmetry, the coronal null and its mirror image must be

of the same sign; the three-dimensional Euler characteristic equation 1.11 insists that both

of these nulls be of the sign of the original photospheric null, and that the photospheric

null change sign.

The process is illustrated in Figure 1.4.5. A single null becomes three, creating two new

separators.

We believe this bifurcation requires at least two sources of both signs to take place. Again,

we have no proof, although the counter-example would require an unlikely-looking topol-

ogy, discussed in Appendix C.
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Figure 1.4.4: Local separator bifurcation. In the first frame (left), a single null point (black dot)

exists. In the second frame (centre), a second-order null (purple dot) comes into existence. This

splits into two nulls (red and blue) in the third frame. These two nulls are linked by a separator

(purple dashed line). Thick and thin solid curves represent spine and fan field lines, respectively;

the dashed black line is also a separator created by the bifurcation, but is not strictly part of it.

Figure 1.4.5: Local double-separator bifurcation. In the left-hand frame, a single null (red dot)

exists; in the centre, it becomes a third-order null. On the right, the null has split into three: a red

null above the photosphere; a blue null on the photosphere; and a pink null below the photosphere.

The two new separators are marked by light and dark purple dashed lines.
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1.4.2 Global bifurcations

Global bifurcations differ from local bifurcations in that null points are not created or

destroyed. Instead, they involve a change in the global structure of the field - a realignment

of separatrix surfaces and spine field lines, for example. There are four simple instances of

global bifurcations: the global spine-fan bifurcation (Brown and Priest, 1999a), the global

separator bifurcation (Brown and Priest, 1999a), the global separatrix quasi-bifurcation

and the global spine quasi-bifurcation (Beveridge et al., 2002).

Global spine-fan bifurcation

The global spine-fan bifurcation is discussed in Brown and Priest (1999a). It allows a

spine field line connecting to one source and a separatrix connecting to another swap

connectivities. This process is shown in Figure 1.4.6. The spine and fan involved in the

bifurcation originally connect to different sources (left); the two approach, until the spine

lies in the fan surface. At the moment of bifurcation (centre) the spine technically forms

a separator because it connects two null points; however, this configuration is highly

unstable. As the process continues, the spine passes through the fan to connect to a

different source; likewise, the fan now connects to the source originally connected to the

spine.

Global separator bifurcation

The global separator bifurcation, in which a separator is destroyed or created, is well-

understood (Brown and Priest, 1999a). Figure 1.4.7 shows an example of this. On the left

there are two separatrix domes intersecting in a separator. As the two domes move apart,

the separator falls in height until, at the moment of bifurcation (middle), it reaches the

plane and vanishes, to leave the detached topology (right).

Global separatrix quasi-bifurcation

In the global separatrix quasi-bifurcation, discussed in Beveridge et al. (2002), a separa-

trix grows infinitely large and wraps around to the other side of the configuration. The
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Figure 1.4.6: Global spine-fan bifurcation. The red spine initially connects to the left of the

configuration, and the blue fan connects to the right. The two approach each other until (centre) the

red spine lies in the blue fan plane (hence the name ‘spine-fan’). By this process, the fan and spine

swap connectivities. The dotted black line is not a field line, but simply a reference line connecting

the two nulls. This bifurcation requires two nulls of the same sign.

Figure 1.4.7: Global separator bifurcation. The intersecting separatrix surfaces approach each

other (left), and the separator drops in height. At the point of bifurcation, the separator lies in the

plane (centre) before vanishing (right); there are now two detached separatrix surfaces.

Figure 1.4.8: Global separatrix quasi-bifurcation. One of the separatrix domes (the blue one)

grows in size (left) until it becomes a separatrix wall (centre) and eventually wraps around the other

(bottom).
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Figure 1.4.9: Global spine quasi-bifurcation. One separatrix surface containing a spine (the blue

one), grows until it forms a separatrix wall (centre) and eventually wraps around to the other side

of the configuration (right).

process is shown in Figure 1.4.8. One separatrix dome grows progressively larger until it

extends to infinity and becomes a separatrix ‘wall’. The separatrix wall still divides the

space into two distinct regions, but does not enclose either of them. After the bifurcation,

the field lines connect again with the same source, but on the other side of the system, in

such a way that the separatrix dome now encloses a different source.

We refer to this as a quasi-bifurcation because one of the features of the skeleton (in

this case the separatrix surface) moves off to infinity, as opposed to regular bifurcations

where the skeleton is altered within a bounded region. When this movement to infinity

happens, there may be a change of topological state from one type to another (as in the

change from an enclosed state to a nested state in the three-source case (Brown and Priest,

1999a)); or, as in the present case, there may be a change of handedness from one state

to another distinct state of the same type. Here the left and right states in Figure 1.4.8 are

indeed distinct because the separatrix domes enclose different sources. However, there is

no regular bifurcation behaviour in any bounded region.

Global spine quasi-bifurcation

The global spine quasi-bifurcation (Figure 1.4.9) is effectively identical to the global sep-

aratrix quasi-bifurcation except that the separatrix involved contains the spine field line

of the other null.
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1.5 Outline

The aim of this thesis is to use the technique of Magnetic Charge Topology to examine

certain configurations of the magnetic field in the solar corona. Some of these configura-

tions are relatively simple, such as the four-source systems. Others, like the seven-source

scenario or the Monte Carlo experiments are far more complicated. In some sense, the

methods used to find, understand and communicate these, often Byzantine, structures are

just as important as the mathematical results.

In the following chapter, we will consider the possible topologies due to a situation with

four balanced sources. We begin by considering previous analysis undertaken in particular

by Brown and Priest (1999a) on unbalanced three-source systems, and on balanced four-

source scenarios by Gorbachev et al. (1988).

We then discuss a systematic method for finding which topologies are possible, before

applying it first to a simple system of two bipoles. This corresponds to the fairly common

solar occurrence of the emergence of a new bipole into an existing bipolar region. We

find four distinct topologies are possible in this case, and produce a bifurcation diagram

for this scenario.

We generalise the analysis to a less-restricted case with four balanced sources. We dis-

cover that three further topologies are possible. We conclude Chapter 2 with a discussion

of the bifurcations between the various states, and a comparison to the unbalanced three-

source catalogue of Brown and Priest (1999a).

In Chapter 3, the unexpected result that local bifurcations can take place outwith the

source plane is discovered. Until now, it was tacitly assumed that local bifurcations could

take place only in the same plane as the sources. While this is almost certainly true for

the local double-separator bifurcation (Brown and Priest, 2001), which relies to a great

degree on symmetry, we show that a local separator bifurcation can take place above the

plane.

This can be achieved with as few as five unbalanced sources, although we go on to con-

sider some seven-source configurations. We look in some detail at the bifurcation process

which is relatively simple with five sources, but still involves four separators becoming

five. With seven sources, it is possible for such a local bifurcation to have an additional

global effect, adding two separators at some distance from the bifurcation. This is a pre-
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cursor to a cartoon model of Magnetic Breakout in Chapter 4.

This model relies on a slightly simpler coronal bifurcation which involves only two sep-

arators. One of the coronal null points and one of the photospheric nulls then undergo a

global spine-fan bifurcation which allows previously enclosed flux in a delta-sunspot con-

figuration to connect to distant flux systems; this is the topological analogue to breakout.

In Chapter 5, a topological model is used to analyse the properties of elemental flux loops.

These are defined as all of the flux joining two photospheric flux sources. We consider

the end regions of a superloop, as considered by Longcope and van Ballegooijen (2002),

made up of many elemental loops. Each of our end regions consists of 1000 sources

arranged according to a planar poisson point process, with a specified flux imbalance, and

a specified distribution of fluxes. It is possible to use a gradient map in conjunction with

the Euler characteristic equations (Equations 1.10 and 1.11) to determine the fraction of

photospheric nulls which are upright in a particular scenario.

We continue by finding the density and distribution of separators in a superloop, by over-

laying pairs of end regions. There is a tendency for the separatrices of the prone nulls to

form ‘trunks’, analogous to river valleys in a geographical map. We find there are approx-

imately 18 separators for each source; this implies that each source connects to about 20

sources in the other end region. This leads to the conclusion that a typical elemental loop

has a diameter of around 200km, agreeing with the estimate of Priest et al. (2002). We

also find that the arrangement of separators is consistent with a concentration into clusters

of about 130, most likely due to the tendency of separatrices to form trunks. This leads us

to believe that many of the elemental loops will contain very little flux, while others will

compensate by being much larger than this estimate.

We conclude with a discussion of our results and their significance for the world of solar

physics.
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Chapter 2

Topologies due to four balanced

sources

Knowing that we are looking for something we already have and are does not, of

course, mean that the journey is unnecessary, only that there is a vast and sublime

joke waiting to be discovered at its end.

Andrew Harvey, The Direct Path

2.1 Abstract

The Sun’s atmosphere contains many diverse phenomena that are dominated by the coro-

nal magnetic field. To understand these phenomena it is helpful to determine first the

structure of the magnetic field, i.e. the magnetic topology. In this chapter, we study the

topological structure of the coronal magnetic field arising from the interaction of four

magnetic point sources in flux balance. We find that seven distinct, topologically stable

states are possible: four in the case where there are two positive and two negative sources,

and three states when one source is of opposite sign to the other three.

We show by means of bifurcation diagrams how the magnetic configuration can change as

the parameters are altered; we also examine the possible bifurcations between the states.

24
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In Section 2.2, we introduce the problem. We outline our assumptions and the model

adopted in Section 2.3. In Section 2.4, we show the method we will use to catalogue the

topologies. Section 2.6 details the different types of topology that can be created with

this model, and Section 2.5 examines the bifurcations between them. We conclude with a

discussion of our results.

The work in this chapter relating to two bipoles was published in Vol. 209 of Solar

Physics, September 2002 (Beveridge et al., 2002).

2.2 Introduction

An important long-term project is to categorise and study the different types of topology

of the coronal magnetic field as a prerequisite for a full understanding of the mechanisms

which control dynamic phenomena such as flares and loop structures.

In this chapter, our aim is to focus at first on the simplest class of complex topologies

that occurs in practice in a solar active region, namely the field due to two dipoles, before

extending the analysis to a more general balanced four-source case. This first scenario is

of some importance, since it arises reasonably frequently, for instance, when a new bipole

emerges into a pre-existing bipolar region.

We consider the magnetic skeleton of the field as described in Section 1.3.2. This consists

of the positions of the sources and any null points along with their spine curves and fan,

or separatrix surfaces, as well as any separators.

The arrangement of these structures determines their topology. We examine here the

topologies due to a small number of discrete point sources in the photosphere, following

for instance Gorbachev et al. (1988). They gave a preliminary treatment of four sources

and found that a coronal null can exist in such a configuration, and that separators do not

occur in every case. They also showed that a null line can exist in a non-co-linear config-

uration, but made no mention of stability. Their bifurcation analysis was also somewhat

limited, since they concerned themselves with existence proofs rather than a quantitative

analysis.

Further work on coronal nulls has been carried out by Inverarity and Priest (1999) and

Brown and Priest (2001), who consider general solutions for such nulls and how they can
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bifurcate out of the photosphere into the corona.

This study is similar to work undertaken by Priest et al. (1997) on two-source and simple

three-source cases, and by Brown and Priest (1999a) who completely classified the three-

source scenario. They found that eight topologies are possible in that case, and analysed

the bifurcations between them.

They divide the scenarios into three classes: those with three sources of the same sign,

those with two sources of one sign outweighing a single source of the other, and those

with one source outweighing two sources of the opposite sign. Without loss of generality,

we assume the majority of the sources are positive.

With three sources of the same sign, two topologies are possible (see Figure 2.2.1). In

the divided state, two unconnected separator walls exist, dividing space into three flux do-

mains. Each of these connects a source to a balancing source at infinity. In the triangular

state, an upright null and an additional prone null exist. There are now three separatrix

walls dividing space into three flux domains as before. These walls meet in the spine of

the upright null. The separatrix surface of the upright null lies in the plane, and is bounded

by the spines of the three prone nulls.

When two sources of the same sign outweigh one of the opposite sign, there are three

possible topologies (Figure 2.2.2). Firstly, there is the nested state, in which both of the

separatrix surfaces are domes. These do not touch, and one lies entirely inside the other.

There are three regions of connectivity. Secondly, in the intersecting state (Figure 2.2.4),

four regions of connectivity exist; one of the separatrix surfaces forms a dome, while the

other is a wall which intersects it. Lastly, in the detached state (Figure 2.2.2), there are

two disconnected surfaces. Again, one is a wall and the other a dome; there are three flux

domains.

When the odd source outweighs the two sources of the same sign, there are also three

possible topologies (Figure 2.2.3). In the separate state , there are two separatrix domes

which meet at the negative source, allowing three flux domains. The enclosed state is quite

similar, although one of the domes now encloses the other. Lastly, in the touching state,

an upright null and an additional prone null exist. Both spines of the upright null connect

to the odd source, and bound the separatrix of the new prone null. The separatrices of the

two original prone nulls are now also bounded by this spine; a three-dimensional view of

this more complicated topology can be seen in Figure 2.2.5.
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Figure 2.2.1: Possible topologies with three positive sources: left, the divided state; right, the

triangular state. The stars represent sources and the dots null points; thick solid lines are spine field

lines, thin solid lines are fan field lines, while dashed lines represent separators.

Figure 2.2.2: Possible topologies with two strong positive sources: left, the nested state; centre,

the intersecting state, and right, the detached state.

Figure 2.2.3: Possible topologies with two weak positive sources: left, the separate state; centre,

the touching state; right, the enclosed state. All topology pictures in this chapter follow the legend

in Table 1.1.
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Figure 2.2.4: A typical three-source topology - the intersecting case. The red and blue crosses

represent positive and negative sources, respectively; the large dots are null points. The dashed

line is a separator, which is the line of intersection between two separatrix surfaces (containing the

lighter solid field lines) which here form a dome and a wall. The thick solid lines are spine field

lines.
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2.3 Assumptions, model and method

As described in Sections 1.2 and 1.3, the coronal magnetic field is often considered to be

force-free (since ¡ L @ and the coronal motions are much slower than the Alfvén speed).

As we are studying the topology of the field, we will make the further assumption that the

field is potential, for the sake of simplicity. Linear force-free fields are unlikely to have

any different topological states, particularly for non-extreme values of P . The precise

parameter values that produce changes between them will certainly differ depending on

how far from potential the field is (Brown and Priest, 2000). This would introduce an

extra set of parameters into the already complicated analysis presented here. The same

is most likely true of non-linear force free fields where the photospheric flux patches are

discrete.

Our aim is to produce diagrams to show where bifurcations occur in parameter space

(bifurcation diagrams). To do this, we find the null points of the magnetic field at certain

locations in parameter space, before calculating numerically the field’s skeleton. We then

classify the topology into one of the types found by the method described in the following

section. To do this, we require a model and a parameterisation of the magnetic field.

We consider four flux sources situated in the photosphere. Included in this set-up is the

fairly common scenario of two bipoles, which might model a new sunspot pair emerging

into an existing sunspot region.

For a set of _ discrete sources placed at
Q e with strengths d e (

a � @:bkbkb � _ ), the field is given

by Equation 1.8:

��)TQU+ �
hi ekj G d

)TQ 
 Q>`R+8 Q 
 Q ` 8 J (2.1)

We examine the case with _ �£¢ . Without loss of generality, we can re-scale the geometry

by choosing two of the source locations as
Q�¤ � ) % � % � % + and

QU¥ � ) @ � % � % + . We can also

re-scale the source strengths so that d G � @ . In general, then, we have four free co-

ordinate parameters (
QU¦

and
Q�§

), and two free strength parameters ( d 0 and d J ; flux balance

ensures that ds¨ �©
 ) @ � d 0 � d J + ). In other words, by re-scaling, we can reduce the twelve

dimensional parameters of Equation 2.1 to just six dimensionless parameters.
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Our expression for
��)RQU+

is then��)TQU+ �
)TQU+8 Q 8 J � d 0 )TQ 
7ª« +8 Q 
7ª« 8 J

� d J )TQ 
 Q ¦ +8 Q 
 Q>¦ 8 J � 
 ) @ � d 0 � d J +=)RQ 
 Q § +8 Q 
 Q|§ 8 J b (2.2)

Since six parameters is still too many to permit a comprehensive study, we decide to

fix d 0 and the position of
QU¦

so as to reduce the number of parameters to three. For

certain values of d J we then vary the position of the fourth source
QU§

and find where the

bifurcations occur.

To do this, though, we need to know which topologies are possible.

2.4 Domain graph method

We find the possible topologies by calculating which domain graphs (see Section 1.3) are

allowable under the following rules:

� A positive source may only connect to negative sources and vice versa.� The graph must be connected - that is to say, any two sources are joined by at least

one path.� Multiple connections between two sources are not permitted.

This last restriction is a little contentious: in a situation with many sources, multiple

connections are indeed permitted (Longcope, 2001). However, these are quite unlikely in

scenarios with few sources.

In the four-source scenario, three domain graphs are possible, as shown in Figure 2.4.6:

three sources of one sign all connect to a single source of the other; or if there are two

sources of each polarity, either all possible connectivities occur or one is excluded.

These graphs correspond to three classes of topology, each with its own connectivity

pattern. Within each class, the topology can change only by means of a bifurcation with

no effect on connectivity: all of the elementary bifurcations described in Section 1.4 apart

from the global separator bifurcation (in which a flux domain is created or destroyed) are

possible, subject to their normal restrictions. For each class, it suffices to find a sample
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Figure 2.2.5: A complicated three-source topology - the touching case. The separatrices of all

three prone nulls (red dots) are bounded by the blue spine; the separatrix of the central prone null

is a bounded wall, while the other two are part-domes. The separatrix of the upright null (blue) is

bounded by the three red spines, and stretches to infinity.

+ +

− +

+

− +

− +

− +

−

Figure 2.4.6: Possible domain graphs for four sources.

Left: with three positive and one negative source, the only possibility is that the negative source

connects to all three positive sources.

Centre and right: with two sources of each polarity, there are two possibilities; either each positive

source connects to both negative sources and vice versa, or a negative source and a positive source

are disconnected.
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topology and consider how it can bifurcate. For instance, the third scenario, where three

flux domains exist, is satisfied by the detached state (Figure 2.6.12).

Consider the possible bifurcations:

� Local separator: Impossible, since it requires at least three sources of same polarity.� Local double-separator: Impossible, because it requires a separator.� Global spine-fan: Impossible, since it requires two nulls of the same sign.� Global separatrix quasi-bifurcation: Possible, as it changes to the nested state (Fig-

ure 2.6.13).� Global spine quasi-bifurcation: Possible, but doesn’t change the topology.

Repeating the analysis for the nested state, we find that these are the only two possible

topologies for the third class.

Applying this method to the three classes gives us seven topologies, as described in Sec-

tion 2.6. First, though, we will put these into context by means of bifurcation diagrams.

2.5 Bifurcation diagrams

Let us consider the arrangements of sources that produce the various topological states.

We begin by fixing three sources and allowing a fourth, balancing source to move freely

around the source plane; its co-ordinates are
)Tn ¨ �po ¨ � % + .

From each such configuration, we find the null points, and follow fan field lines from each

of the nulls numerically. By analysing the connectivity of these field lines, it is possible

to determine the topology for a given set of sources. In so doing, we find the parame-

ters
)Tn ¨ �po ¨ + where bifurcations occur and join them with smooth curves, as described in

Appendix B.

If Figure 2.5.7, we analyse a balanced four-source case with three positive sources. We

find that when the moving source is far from the fixed sources, the topology is invariably

in the upright null state; closer in, the field adopts a separate or enclosed topology. The
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local separator bifurcation (marked by a solid line) forms the boundary between these two

regions.

Each enclosed region touches a source, and is bounded on either side by a global spine

(dotted line) and a global separatrix (dashed line) quasi-bifurcation.

Lastly, the boundaries between the three separate regions, which occur when the fourth

source is (in some sense) between the three others, are formed by the global spine-fan

bifurcation.

In Figure 2.5.8, we do the same thing for a balanced four-source case with two positive

and two negative sources. When the moving source is distant from the sources, or be-

tween then, the field is in the intersecting state. A global separator bifurcation (solid line)

separates these regions from the nested and detached regions, which in turn are separated

by a global separatrix quasi-bifurcation.

There is also a region in which the topology has a coronal null; this touches two of the

nulls and is divided from the intersecting region by a local double-separator bifurcation

marked by a dashed line.

There is a further global separatrix quasi-bifurcation line which surrounds the sources and

divides one intersecting state from another. Lastly, a global spine quasi-bifurcation line

(dash-dot-dotted line) passes through the source at the origin; outwith the intersecting

region, this becomes a global separatrix quasi-bifurcation.

These two scenarios, between them, allow all seven permissible topologies, and all six

permissible bifurcations, as described in Section 1.4.

The resulting bifurcation diagrams (Figures 2.5.7 and 2.5.8) are rather complicated and

include six different types of bifurcation (namely, a global separator bifurcation, a global

spine-fan bifurcation, a local separator bifurcation, a local double-separator bifurcation,

a global separatrix quasi-bifurcation and a global spine quasi-bifurcation). They allow

changes of topology between several distinct states: in a situation with three sources

of one sign and one of the other, three topologies (namely, the separate, enclosed and

upright null states) are possible; if there are two sources of each polarity, then four states

(the detached, nested, intersecting and coronal null states) are possible.

Calculating the bifurcation diagrams is made particularly difficult by the global separatrix
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and the global spine quasi-bifurcations, in which parts of the skeleton move off to infinity

and are not easily found by automatic computational algorithms.

2.6 Topologies

It is the different possible connectivities of the fan and spine field lines which define the

different topologies of the overlying coronal magnetic configuration.

By using the Euler characteristic equations detailed in Section 1.3, we see from Equa-

tion 1.10 that there must be two more prone nulls than upright nulls. This implies that the

number of photospheric nulls is even for a four-source setup. In most cases, there are two

photospheric nulls, but a case with four photospheric nulls (three prone and one upright)

does exist (the upright null state).

In a situation with three sources of one polarity (say, positive) and one of the other, the

three-dimensional Euler characteristic (Equation 1.11) dictates that there be two more

positive nulls than negative; if there are two sources of each polarity, there must be as

many positive nulls as negative.

2.6.1 Three positive sources and one negative

Three topologies are possible in this class: the separate state, the enclosed state and the

upright null state.

Separate and enclosed states

In both of these cases (Figures 2.6.9 and 2.6.10), two separatrix domes exist, each sur-

rounding one of the positive sources and connecting to the negative source. In the separate

state, the two domes are independent; in the enclosed state, one of the domes surrounds

the other.

These are very similar to the three-source separate and enclosed states; the only difference

is that, where a spine in the three-source scenario connected to infinity, here it connects
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Figure 2.5.7: Bifurcation diagram for three positive sources. Three sources are fixed at ¬��®¯T°:±S°�²
, ¬´³µ® ¯·¶1±S°�²

and ¬q¸�® ¯T°U¹ ºU±S°:¹ »|²
, with strengths ¼½M® ¶

, ¼p³�® °U¹ »
and ¼¾¸�® °:¹ ¿

. A

fourth balancing source with strength ¼SÀÁ®7ÂÄÃ ¹�¶ is allowed to move freely. The different regions

on the plot indicate where the fourth source must be placed to give these topologies. The lines

represent bifurcations: the solid line represents a local separator bifurcation, and the dotted line a

global spine-fan bifurcation. The dashed lines are global separatrix quasi-bifurcations, while the

dot-dashed lines represent global spine quasi-bifurcations. The topological states are represented

by letters: U is upright, E enclosed and S separate.
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Figure 2.5.8: Bifurcation diagram for a bipolar case. Three sources are fixed at ¬��® ¯T°:±¾°|²
, ¬q³Å®¯·¶|±S°�²

and ¬Æ¸5® ¯T°:¹ ºU±S°U¹ »|²
, with strengths ¼f�® ¶

, ¼p³Á® °U¹ »
and ¼¾¸�®©Â °U¹ » . A fourth balancing

source with strength ¼ À ®ÇÂ ¶1¹ ° is allowed to move freely. The different regions on the plot indicate

where the fourth source must be placed to give these topologies. The lines represent bifurcations:

the solid line represents a global separator bifurcation, and the dashed line a local double-separator

bifurcation. The dotted line represents a global separatrix quasi-bifurcation, and the dash-double-

dotted line a global spine quasi-bifurcation. The four possible topologies are denoted by letters I

(intersecting), D (detached), N (nested) and CN (coronal null).
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to a third positive source. These two cases also subsume the divided state; whereas both

separatrices in that state connect to infinity, here, both connect to a source.

Upright null state

In the upright null state (Figure 2.6.11), three prone nulls and an upright null exist. The

fan of the upright null lies in the plane and is bounded by the spines of the prone nulls; its

spine connects to the negative source above and below the plane. The spine bounds all of

the separatrix surfaces from the prone nulls, two of which form part-domes, and the other

a bounded wall.

This is similar to both the touching and triangular states in the three-source scenario; in

both of those cases, either separatrices or spines were connected to infinity. Here, they

connect to a source.

2.6.2 Two positive sources and two negative: three flux domains

As previously discussed, only two topologies are possible in this case: the detached and

nested states.

Detached and nested states.

If all of the fan field lines from one null connect to one source and all those in the other fan

connect to the other, the state is either detached (Figure 2.6.12) or nested (Figure 2.6.13).

The only difference between the two states is that in the nested state, one of the separa-

trix domes envelops the other, while the detached state is topologically identical to two

independent and unbalanced pairs of sources.

These two states are very similar to the three-source detached and nested states; in those

situations, one of the separatrix surfaces connected to infinity; here, the surfaces connect

to a source.
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Figure 2.6.9: Separate state. Two independent separatrix domes meet only at the negative source.

È ÈÉÊ ÊËÌ Í ÍÎ ÎÏÐÑÒÓ Ó ÓÔÕÖ×Ø Ø ØÙ ÙÚ ÚÛÜ ÜÝ

Figure 2.6.10: Enclosed state. Two separatrix domes meet only at the negative source; one is

entirely enclosed by the other.

Figure 2.6.11: Upright null state. There are three separatrix surfaces from positive nulls: two form

part-domes bounded by the spine of the upright null, while the other is a wall, also bounded by the

blue spine. The separatrix of the negative null lies entirely in the plane and is bounded by the spine

field lines of the positive nulls.
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Figure 2.6.12: Detached state. The two separatrix domes do not intersect. There is no separator

and only three regions of connectivity.

Figure 2.6.13: Nested state. One separatrix dome surrounds the other. There are three regions of

connectivity and no separator exists. These are schematic plots; in practice, both separatrix domes

are often much larger and are far from circular.
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2.6.3 Two positive sources and two negative: four flux domains

In this scenario, two topologies are possible: the intersecting state and the coronal null

state.

Intersecting state

If the fan field lines for a null in the plane connect to different sources, and the nulls are

of different sign, then we have the intersecting state (Figure 2.6.14). The fans of the two

nulls here form two separatrix domes, which intersect in a separator field line.

This is quite similar to the three-source intersecting state; there, the separatrix wall con-

nected to infinity; here, it connects to a fourth source.

Coronal null state

Finally, if both nulls are of the same sign, a further two nulls of the opposite sign are

required to satisfy the three-dimensional Euler characteristic. Because of the symmetry

in the plane, one must be above the photosphere (i.e. a coronal null) and the other in the

region V*[ %
, considered only for the mathematics; for the physical interpretation, this

region is disregarded. This is the coronal null state (Figure 2.6.15.)

This state has no three-source analogue; in fact, it can be shown that coronal nulls exist

only in highly unstable null rings in the unbalanced three source case; see Theorem 2 in

Appendix A for a proof.

2.7 Discussion

In reality, the solar surface contains many thousands of flux ‘sources’ in the form of

sunspots, ephemeral regions, network elements and intense flux tubes, which are con-

stantly appearing, fragmenting, merging, cancelling and disappearing. The overlying

coronal magnetic field has therefore an incredibly complex nature.

However, studying simpler topologies due to three or four sources is important, since
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Figure 2.6.14: Intersecting state, as a projection in the plane (left) and in three dimensions (right)

produced by two positive sources (pink stars) and negative sources (red stars). The fan of each null

(heavy dot) defines a separatrix surface (thin solid lines). In this case, the separatrices form domes

which intersect in a separator (dashed line). There are four distinct regions of connectivity.
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Figure 2.6.15: Coronal null state. There are four regions of different connectivity and two separa-

tors, each of which is a field line joining the coronal null to a null in the photospheric plane.
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these act as building blocks for the whole corona. So far, a complete study of the topol-

ogy of three sources has been undertaken (Brown and Priest, 1999a), and an analysis of

the two-bipole case made by Beveridge et al. (2002). An exhaustive study of the topol-

ogy due to four balanced sources is far more difficult to complete since it contains two

more parameters, namely the position co-ordinates of the fourth source. (If there is a flux

imbalance, a third extra parameter, namely the strength of the imbalance, would be in-

cluded.) Until now, only a cursory analysis has been reported of a few special cases with

four sources.

Here we catalogue all of the possible topological states due to four balanced sources, and

provide a method to extend the analysis to greater numbers of sources. We also find where

bifurcations between the states take place.

It is interesting to compare the results of the balanced four-source case with those of

the unbalanced three-source case obtained by Brown and Priest (1999a). Their analysis

centred on one source with strength 1, and two having strength d . Examining the ranged [ 
 % bûú (so that a source added to give flux balance would have to be positive, giving

two sources of either polarity), they find three types of topology: the (three-source) nested,

intersecting and detached states. We find analogues to all of these and, in addition, a state

with a coronal null. In the Brown and Priest analysis, it seems there is no bifurcation be-

tween the nested and detached states. This is because there is no three-source analogue to

the global separatrix and global spine quasi-bifurcations. The assumed balancing source

at infinity in the three-source case prevents the infinite growth of the separatrix domes and

spine loops.

In the range 
 % bûú [ d [ % b , so that the balancing source would have to be negative (giving

three sources of the same polarity, and one of the other), they again find three topological

scenarios: the separate, enclosed and touching states. Again, we find analogues to all

three.

Finally, they dealt also with three sources of the same sign (with a balancing source of

the opposite sign), finding two topologies: the divided and the triangular states. These are

simply disguised versions of the separate, enclosed and touching states.

We expect that extending the analysis to force-free fields or changing the values of our

fixed parameters - the positions of the three central sources and the strengths of two of

them - would change the size and shape of the regions produced, but is highly unlikely to
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produce any fundamentally different topologies or bifurcations.

Although understanding these topologies is an important task in its own right, it will be

interesting in the future to undertake numerical MHD experiments on various bifurcations

that we have identified in order to determine their dynamical consequences for the Sun’s

atmosphere.
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Genesis of coronal null points

Thirty spokes are made one by holes in a hub

By vacancies joining them for a wheel’s use

The use of clay in moulding pitchers

Comes from the hollow of its absence;

Doors, windows in a house,

Are used for their emptiness:

Thus we are helped by what is not

To use what is.

Lao Tzu, Tao te ching (Trans. Witter Brynner)

Abstract

Coronal null points are among magnetic topology’s most significant features. They are

important locations for reconnection and are believed to play a substantial role in the

triggering of solar flares.

Yet little is known about the creation and destruction of coronal nulls. Until recently,

the only known mechanism for such creation and destruction was local double-separator

bifurcation, which takes place in the photosphere. In this chapter, we show that there exist

other mechanisms which create or destroy nulls in the corona, well above the photosphere.

44
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Two examples will be presented to illustrate a new, coronal local separator bifurcation.

In the first example, with five unbalanced sources, we show that such a bifurcation can oc-

cur. The second, with seven unbalanced sources, shows that comparatively large numbers

of nulls can be created in this way in a reasonably realistic scenario.

We analyse these new bifurcations, in preparation for the following chapter which will

deal with the Magnetic Breakout Model for flares.

3.1 Introduction

One of the earliest papers to mention coronal null points was Molodenskii and Syrovatskii

(1977). They offered a ‘natural’ method for finding coronal nulls which, in essence,

involved finding the intersection of curves satisfying ü { � ü } � %
with the surfaceü ~ � %

, where ü { , ü } and ü ~ are the
n

-, o - and V -components of the magnetic field
�

.

The first real consideration of coronal nulls, though, was in Gorbachev et al. (1988), who

examined the balanced four-source case and spoke of null points as possible triggers for

solar flares.

Inverarity and Priest (1999) considered a scenario in which a single positive source was

surrounded by positive sources on a hexagonal network. They found at most one coronal

null, even with large numbers of positive sources. We explain why this should be so in

Section 3.6.

Questions about the creation of coronal nulls began to be answered only when the careful

analysis of small number of sources was undertaken. Brown and Priest (2001) found that

nulls could be created in an unbalanced four-source case through a local double-separator

bifurcation, as described in Section 1.4, and further detailed in the following section.

There the story appears to have ended as far as MCT is concerned: more recent work, such

as Schrijver and Title (2002) and Longcope et al. (2003), concentrated on the density of

coronal null points above a photosphere containing many flux sources, although the latter

did hint (in passing) that local bifurcations might be possible in the corona.

We will be considering in the following sections extensions of Brown and Priest’s work,

by adding a second ring of sources to the first. In each of these we will attempt to un-
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derstand the nature of the bifurcations, as well as analysing them somewhat in terms ofü { � ü } � %
curves and ü ~ � %

surfaces, before concluding with a discussion.

3.2 Four unbalanced sources: the Brown and Priest case

We begin by considering the work of Brown and Priest (2001) from a topological stand-

point. They surround a positive source with three negative sources, such that the positive

source is outweighed by the others, as in Figure 3.2.1.

The skeleton of this configuration is fairly simple: the separatrix of the coronal null forms

a dome based in the ring of photospheric spines, while its own spine connects to the

central, positive source and to the balancing source at infinity. The separatrices of the

photospheric, negative nulls form walls which meet in the coronal null’s spine, divid-

ing the outlying volume into three segments. There are three separators, each linking a

photospheric null to the coronal null.

Moving the central source away from the centre, they find that the coronal null falls in

height towards one of the the photospheric nulls, and eventually coalesces with this and

its image below the corona, leaving one photospheric null (of the same sign as the original

coronal null) in its place.

Naturally, this alters the skeleton. The positive null now lies in the photosphere; its spine

still connects to the central positive source and to the balancing source, but it now lies

in the source place as well. Its separatrix is still a dome bounded by the spines of the

two remaining negative nulls, whose separatrices still form walls bounded by the positive

spine. Now, though, there are only two separators.

It is instructive to examine the surfaces where various magnetic field components are

equal to zero (zero surfaces), as plotted in Figure 3.2.3. In this configuration, we have

disturbed the symmetry to avoid structurally unstable effects. Surfaces where ü { � %
and ü } � %

pass through each source and each null point. In the source plane, symmetry

considerations imply that ü ~ � %
everywhere, so null points occur where lines of ü { � %

and ü } � %
(in the V � %

plane) cross. For V�W %
, we must consider where the surfaces

of ü { � %
, ü } � %

and ü ~ � %
intersect.

In Figure 3.2.3, the ü } � %
surfaces (dashed lines) form a dome (upper) and a wall
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Figure 3.2.1: Brown and Priest’s four-source configuration in two (left) and three (right) dimen-

sions. The central, positive source (red star) is outweighed by the three negative sources (blue stars)

surrounding it. A coronal null (red dot) exists).

Figure 3.2.2: The configuration after a positive source has been perturbed and a local double-

separator bifurcation has occurred. The positive null now lies in the photosphere and there is no

coronal null.
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(lower); the ü { � %
surfaces (dotted lines) do likewise, with a dome to the right and a

wall to the left. It is clear that in this case, each null point is linked to exactly one source

by a three-dimensional curve above the plane on which ü { � ü } � %
(a zero curve). The

null near
) % � 
 @ + , for instance, is linked in this manner to the source near

) % b ý � 
 % b ú + .It is not the case that every source is linked to a null; the source near
) 
 % b ý � 
 % bûú + is a

counter-example, as would be the balancing source at a great distance.

Of particular note is the zero curve between the null near
) % b ý � % b ú + and the central source.

The two end-points of this curve lie on different sides of the ü ~ � %
surface and hence

the ü ~ component along the line must vanish somewhere on it. This point is the coronal

null.

If the central source is moved, for example, to the right, the ü ~ � %
surface also changes

shape and, at a critical value, coincides with the null and eventually encloses it. After this,

there is no further link crossing the zero surface, so there is no coronal null. So what has

happened?

Simply, the null has bifurcated into the photosphere by means of the local double-separator

bifurcation as previously described in Section 1.4.1. The process is depicted in Fig-

ure 3.2.4. In fact, this provides an intuitive means for understanding the local double-

separator bifurcation as a zero curve passing through the intersection of two zero surfaces

of the same component. It seems unlikely that this component would ever be anything

other than ü ~ , except in highly symmetric cases.

3.3 Five unbalanced sources: a coronal bifurcation

3.3.1 The double coronal null case

Consider a configuration set up as follows: a positive central source is flanked by two

nearby negative sources. Perpendicular to this, and at a greater distance, two more positive

sources are placed as shown in Figure 3.3.5. A sixth, balancing source is included at a

great distance.

More precisely, the sources are located at:
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Figure 3.2.3: Zero surfaces of the magnetic field for an unbalanced four-source case. The purple

dome represents the þ ÿ�® °
surface, while the green lines are curves upon which þ � ®Çþ��]® °

.

The coronal null point (dot) occurs when a zero-curve and zero-surface intersect.

Bz = 0

Bz = 0

Bx = By = 0

Bz = 0

Bz = 0

Bx = By = 0

Bz = 0

Bz = 0

Bx = By = 0

Figure 3.2.4: Schematic picture of local double-separator bifurcation. In the left-hand picture, the

curve of þ � ®�þ��X® °
(dotted) intersects þ ÿN® °

surfaces in three points (dots). As the curve

moves left, these nulls coalesce as a third-order null (centre) before leaving just one first-order null

(right).
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Source Position Strength� �� ) % � % + d� FG ) @ � % + 
 @� �0 ) % � 
 � + � @� FJ ) 
 @ � % + 
 @� �¨ ) % � � + � @� F� far distant 
 d
In this unbalanced case, there are four photospheric null points. Their exact location de-

pends on d , but they will lie somewhere near
)�� @ � % + and

) % � � ú + . For d smaller than some

critical value d � , two coronal null points exist on the V -axis. This topology is depicted in

Figure 3.3.6 and described in Table 3.1.

Two domes (each comprising two separator surfaces) prevent any flux linking � �� and� F� . The separatrices of the coronal nulls divide the flux from either of these sources

between the two remaining photospheric sources. There are five separators: each of the

photospheric nulls is connected to the coronal null of opposite sign, and the two coronal

nulls are also linked by a separator.

Again, it is worth examining the zero surfaces of this configuration (in fact, we displace

the central source slightly to break the symmetry). These are shown in Figure 3.3.7.

The null points � �0 and � �¨ (left and right) are clearly linked to the sources � �0 and � �¨ ,

respectively. The linkage of the other two nulls is less clear: the detail of the centre shows

that � FG (top) is linked to the central source; the combination of the pictures makes it

apparent that � FJ connects to � FJ , and that this link appears to cross the ü ~ � %
surface

twice, giving two coronal nulls.

The picture alone is insufficient to conclude that coronal nulls exist, because it is possible

that the zero curve simply loops over the zero surface without crossing it. However, it

suffices to examine the ü ~ component along this particular ü { � ü } � %
curve to

determine whether coronal nulls exist.
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N2+

S1− N1−

S2+

S0+S3−

N4+

S4+

N3−

Figure 3.3.5: Photospheric skeleton of an unbalanced five-source case.

Figure 3.3.6: Five-source configuration with two coronal nulls (blue and red dots). There are five

separators.
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Null Position Spine

connections

Separatrix

� FG ) % � ú + � FG and � F� Forms half-dome bounded by spine of �]� �� �0 ) 
 @ � % + � �0 and � �� Forms half-dome bounded by spine of �]� F� FJ ) % � 
 ú + � FJ and � F� Forms half-dome bounded by spine of �]� �� �¨ ) @ � % + � �¨ and � �� Forms half-dome bounded by spine of �]� F
�]� F ) % � % � V F + � FG and � FJ Forms wall bounded by source plane and

spine of �]� �
�]� � ) % � % � V�� + � �0 and � �¨ Forms wall bounded by spine of �]� F

and

reaching to balancing source.

Table 3.1: Separatrix surfaces of five-source, two-null case.

Figure 3.3.7: Zero surfaces for five-source, two-null case with ¼N® °:¹ º
. The left-hand picture

shows the surfaces globally, while the right-hand picture shows a detail of the centre.
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3.3.2 The four-separator case

As d increases, the two coronal nulls approach and eventually annihilate; the bifurcation

process will be examined in the following section. For now we will simply examine the

topology.

The photospheric topology remains unchanged; there are four photospheric nulls, whose

spines are also unaffected. The separatrices do change, however, as depicted in Fig-

ure 3.3.8 and described in Table 3.2

The separatrix surfaces that previously defined the outer dome now form two distinct

domes that meet in the spine field lines running across the middle of the configuration.

By contrast, the separatrices that formed the inner dome have become walls instead.

The combination of these two changes allows magnetic flux to link the central source � ��
to the balancing source � F� , as shown in the connectivity diagram Figure 3.3.9. There are

now four separators, with each positive null connected to each negative null.

The zero surfaces diagram, Figure 3.3.10, shows that there are now two ü ~ � %
surfaces

and, as one would expect in a case without coronal nulls, none of the ü { � ü } � %
curves cross either of them.

3.3.3 Bifurcation behaviour

Before we discuss the fairly complicated behaviour of this bifurcation, it is worthwhile

to examine the local separator bifurcation in the plane by way of comparison. (Through

the rest of this chapter, all local bifurcations are described in the sense that null points are

created. It is, of course, possible for them to work in reverse, destroying null points.)

This behaviour is shown in Figure 3.3.11. There are initially two separatrix surfaces which

move closer to each other. At some critical point, they meet and form a second-order null

point. This then splits into two nulls; the (vertical) spine of one constitutes the boundary

of the two original fans and the fan of the other new null. The fan of the upright null

is bounded by the spine of the new prone null and, (not pictured) the spines of the two

original nulls. In this instance there are three new separators where none existed before.

The bifurcation behaviour in the five-source case is somewhat similar to this, although it
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Figure 3.3.8: A five-source configuration with no coronal null.

Null Separatrix (before) Separatrix (after)� FG Half-dome bounded by spine of �]� � Dome bounded by spines of � �0 and � �¨� �0 Half-dome bounded by spine of �]� F
Wall bounded by spines of � FG and � FJ� FJ Half-dome bounded by spine of �]� � Dome bounded by spines of � �0 and � �¨� �¨ Half-dome bounded by spine of �]� F
Wall bounded by spines of � FG and � FJ

Table 3.2: Separatrix surfaces for five-source, four-separator case.
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Figure 3.3.9: Change in connectivity between the two-coronal-null state (left) and the no-coronal-

null state (right). The bifurcation allows flux to connect the central source 	�
� to the distant balanc-

ing source 	 
 .

Figure 3.3.10: Zero surfaces for five-source, no-null case with ¼ ® ¶|¹ �
.
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now requires four separatrix surfaces. Both pairs of surfaces buckle towards each other,

and form a second-order null where they meet. This null then splits into two, each new

spine bounding two of the original fans and the fan due to the other new null.

The effect in this case, as we hinted before (Figure 3.3.9), is to allow or forbid connec-

tivity between � �� and � F� . If the bifurcation destroys two nulls, it allows flux that was

previously contained by the separatrix domes to ‘break out’ and connect to a distant flux

system.

In terms of separators, as shown in Figure 3.3.13, the four separators that originally linked

the four photospheric nulls in a loop have now been redirected by way of the two new

nulls. There are now five separators: four connect photospheric nulls to coronal nulls, and

the other connects the two coronal nulls.

3.4 Seven sources: more coronal bifurcations

A more complicated and more interesting case is a direct extension of Brown and Priest’s

example. In this scenario, we surround their four-source case with three sources of the

same sign as the central source, as shown in the following table and in Figure 3.4.14.

Source Position Strength� �� )�� { � � } + d� FG )�� � 9 � � % bûú + 
 @� �0 ) � � � 9 � � 
 @:bûú + � �� FJ ) % � 
 @ + 
 @� �¨ ) 
 ��� � 9 � � 
 @:bûú + � �� F� ) 
 � � 9 � � % b ú + 
 @� �I ) % � � + � �� F� far distant 
 )��Á� d +
It is necessary to offset the central source a small distance

)�� { � � } + from the origin to avoid

the spines of two coronal nulls coinciding. This configuration is highly dependent on the

symmetry of the sources and hence topologically unstable.
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Figure 3.3.11: Bifurcation behaviour for local separator bifurcation. Two separatrix surfaces (blue

and red) move close to each other (left and centre left). Eventually they meet and form a second-

order null (green dot, centre right) which then splits into two (right).

D
Spine of upper null (C−)

Fan of upper null (C−)

Spine of lower null (C+)
Fan of lower null (C+)

C+

C−

Figure 3.3.12: Bifurcation behaviour for coronal local separator bifurcation. Four separatrix sur-

faces (blue, red, maroon and dark green) move close to each other (left and centre-left). Eventually

they meet and form a second-order null (black dot, centre right) which then splits into two (right).
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2

3 4

1

43

C+ C−

2 1

Figure 3.3.13: Separator changes for five-source bifurcation. Each edge separator is redirected

via the two new coronal nulls.

S6+

N1+

S2+

N3+

S4+

N5+

S5−

N6−

S1−

N2−

S3−
N4−

S0+

Figure 3.4.14: Photospheric topology for seven-source state. There are six photospheric nulls,

three of each sign.
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3.4.1 Two coronal null case

This topology is shown in Figure 3.4.1. There are six photospheric nulls. Each of them

has spines connecting to adjacent nulls of the same sign, forming an inner ring of negative

spines and an outer ring of positive spines. Their separatrix surfaces are walls or half-

domes bounded by the spines of coronal nulls.

For small values of d , there are two coronal null points close to the V -axis. The lower, pos-

itive null has a spine connecting to the central source � �� and to one of the outer, positive

sources; its separatrix forms an inner dome bounded by the ring of negative spines.

The upper, negative null has spine field lines connecting to the balancing source � F� and

to one of the inner, negative sources. Its separatrix forms an outer dome, bounded by the

ring of positive spines.

There are eight separators: each of the coronal nulls is connected to the three photospheric

nulls of opposite sign; additionally, the separatrices of � �G and � F0 intersect, as do those

of � �� and � F¨ .

This is summarised in Table 3.3.

3.5 Four coronal nulls

As d increases, two new coronal nulls are created (Figure 3.5.16). This leads to a yet more

complicated topology.

There are now two positive coronal nulls, �]� �I as before and �]� �¨ , the spines of which

connect to � �� and � �¨ . Their separatrices together form a wine-bottle shape, whose base

coincides with the ring of negative spines. The two parts of the bottle are bounded on

either side by the spines of the two negative coronal nulls �]� FJ and �]� F� . These spines

connect � FJ (respectively, � F� ) to the balancing source � F� .

The separatrices of the negative coronal nulls now form a torus with its hole at � �� and

its outer edge on the ring of positive spines. The boundaries between the two separatrices

are the spines of the two positive coronal nulls, which form arches.

The separatrices of photospheric nulls � F¨ and � �� have also changed. The separatrix of
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CN3−CN6+

N6−S6+

S1−

N1+ S2+

N3+

S0+ S3−

N2−

CN3− CN6+

N6− S6+N3+

S0+S3−

S4+ N5+

N4−

S5−

Figure 3.4.15: Seven source, two null state. Left, view from the left; right, a view from the right.
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Null Approx.

Position

Spine

connections

Fan description

� �G ) � b ú � @:bûú + � �I and � �0 Wall connecting to� FG , � F0 , � FJ , �]� FJ and � F�� F0 ) % b ý � 
 % bûú + � FG and � FJ Part-dome connecting to� �� , �]� �I , � �I , � �G and � �0� �J ) % � 
 � + � �0 and � �¨ Wall connecting to� FJ , �]� FJ and � F�� F¨ ) 
 % b ý � 
 % bûú + � FJ and � F� Part-dome connecting to� �� , �]� �I , � �I , � �� and � �¨� �� ) 
 � b ú � @:bûú + � �¨ and � �I Wall connecting to� F� , � F¨ , � FJ , �]� FJ and � F�� FI ) % � @ + � F� and � FG Wall connecting to� �� , �]� �I and � �I�]� FJ ) % � % � V�� + � FJ and � F� Dome connecting to� �G , � �0 , � �J , � �¨ , � �� , and � �I�]� �I ) % � % � V F + � �� and � �I Dome connecting to� FG , � F0 , � FJ , � F¨ , � F� , and � FI

Table 3.3: Separatrix details for seven-source, two-null case.
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� F¨ is now bounded by the spine of �]� �¨ to form a wall; that of � �� remains a wall, but

is now bounded by the spine of �]� �� .

The most significant changes, though, are in terms of connectivity (there is now flux

connecting � �� to � F� ) and in terms of separators. Previously, no separator connected

the coronal nulls; now, there is a separator ring connecting �]� FJ to �]� �¨ to �]� F� to�]� �I and back to �]� FJ , a total of four coronal separators. Meanwhile, the separator that

connected � F¨ to � �� has vanished, as have those connecting � F¨ to �]� �I and � �� to�]� FJ ; in their place, � F¨ and � �� are connected to �]� �¨ and �]� F� (respectively) by

new separators, of which there are now eleven.

This new configuration is summarised in Table 3.4.

3.5.1 Six coronal nulls

Increasing d still further allows a second bifurcation to take place, creating two more

coronal nulls, �]� FG and �]� �0 . The spines and separatrices of these nulls, and of the

photospheric nulls below them, are (effectively) mirror images of �]� F� and �]� �¨ , re-

spectively. The six coronal nulls are linked by a loop of separators, and each photospheric

null is linked to exactly one coronal null, giving a total of twelve separators. The topology

is summarised in Table 3.5 and depicted in Figure 3.5

In this topology, � �I and � FJ are no longer linked by magnetic flux. The changes in

connectivity engendered by the bifurcations are shown in Figure 3.5.23.

Figure 3.5.19 shows the zero-surfaces in the source plane for cases with two and with

six nulls. Qualitatively, the two are identical, although the number of nulls is patently

different. Does this spell the end of our cherished zero-surface method for finding nulls?

Not in the least. The
n o -zero lines still cross the V -zero surfaces; they simply do so in

some cases twice above the plane. To find all coronal nulls, we must follow the zero lines

from each photospheric null to a source, noting if and where the sign of ü ~ changes, as

shown in Figure 3.5.20.
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CN3−CN6+

N6−S6+

S1−

N1+

N2−

S2+

N3+

S0+ S3−

N3+

N6−

N4−

S3−

CN5−

CN6+

S6+S0+

S4+

CN3−

CN4+

S5−

N5+

Figure 3.5.16: Seven source, four null state. Left, view from the left with the two new nulls; right,

a view from the right.
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Null Approx.

Position

Spine

connections

Fan description

� �G ) � bûú � @:bûú + � �I and � �0 Wall connecting to� FG , � F0 , � FJ , �]� FJ and � F�� F0 ) % b ý � 
 % bûú + � FG and � FJ Part-dome connecting to� �� , �]� �I , � �I , � �G and � �0� �J ) % � 
 � + � �0 and � �¨ Wall connecting to� FJ , �]� FJ and � F�� F¨ ) 
 % b ý � 
 % bûú + � FJ and � F� Wall connecting to� �� , �]� �¨ , and � �¨� �� ) 
 � bûú � @:bûú + � �¨ and � �I Wall connecting to� F� , �]� F� and � F�� FI ) % � @ + � F� and � FG Wall connecting to� �� , �]� �I and � �I�]� FJ ) % � % � V J + � FJ and � F� Part-dome (torus) connecting to�]� �I , � �I , � �G , � �0 , � �J , � �¨ , �]� �¨ , and � ���]� �¨ ) % � % � V ¨ + � �� and � �¨ Wall (bottle) connecting to� FJ , � F¨ , � F� , �]� F� , � F� and �]� FJ�]� F� ) % � % � V � + � F� and � F� Part-dome (torus) connecting to� �� , �]� �I , � �I , � �� , � �¨ and �]� �¨
�]� �I ) % � % � V I + � �� and � �I Dome connecting to� FG , � F0 , � FJ , �]� FJ , � F� , �]� F� , � F� and � FI

Table 3.4: Separatrix details for seven-source, four-null case.
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N3+

N6−

S3−

CN6+

S6+ S0+

CN3−

CN1− CN2+

N2−
S1−

N1+

S2+

N3+

N6−

N4−

S3−

CN5−

CN6+

S6+S0+

S4+

CN3−

CN4+

S5−

N5+

Figure 3.5.17: Seven source, six null state. Left, view from the left; right, a view from the right

with two new nulls.
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Null Approx.

Position

Spine

connections

Fan description

� �G ) � bûú � @:bûú + � �I and � �0 Wall connecting to� FG , �]� FG and � F�� F0 ) % b ý � 
 % bûú + � FG and � FJ Wall connecting to� �� , �]� �0 and � �0� �J ) % � 
 � + � �0 and � �¨ Wall connecting to� FJ , �]� FJ and � F�� F¨ ) 
 % b ý � 
 % bûú + � FJ and � F� Wall connecting to� �� , �]� �¨ , and � �¨� �� ) 
 � bûú � @:bûú + � �¨ and � �I Wall connecting to� F� , �]� F� and � F�� FI ) % � @ + � F� and � FG Wall connecting to� �� , �]� �I and � �I�]� FG ) % � % � V G + � FG and � F� Part-dome (torus) connecting to� �G , � �0 , �]� �0 , � �� , �]� �I and � �I�]� �0 ) % � % � V 0 + � �� and � �0 Wall (bottle) connecting to� F0 , � FJ , �]� FJ , � F� , �]� FG and � FG�]� FJ ) % � % � V J + � FJ and � F� Part-dome (torus) connecting to� �J , � �¨ , �]� �¨ , � �� , �]� �0 and � �0�]� �¨ ) % � % � V ¨ + � �� and � �¨ Wall (bottle) connecting to� FJ , � F¨ , � F� , �]� F� , � F� and �]� FJ�]� F� ) % � % � V � + � F� and � F� Part-dome (torus) connecting to� �� , �]� �I , � �I , � �� , � �¨ and �]� �¨
�]� �I ) % � % � V I + � �� and � �I Dome connecting to� FG , �]� FG , � F� , �]� F� , � F� , and � FI

Table 3.5: Separatrix details for seven-source, six-null case
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3.5.2 Bifurcation behaviour

The first seven-source local coronal bifurcation behaviour (between the two-null and four-

null case) is, in some ways, similar to its five-source counterpart - it creates two nulls

connected by a separator and allows previously enclosed flux from � �� to connect to � F� .

However, it is qualitatively different. Where the five-source bifurcation results from the

pinching together of four separators, in this case, only three separators are originally

involved. There is an added peculiarity in that a separator connecting the two original

coronal nulls is created - a global twist to a local bifurcation.

This is depicted in Figures 3.5.18 and 3.5.21.

The second bifurcation, converting a four-null state into a six-null state, appears topolog-

ically identical to the five-source bifurcation, as shown in Figure 3.5.22.

3.6 Discussion

In this chapter, we have found and examined surprising examples of local bifurcations

taking place above the source plane. The first of these allowed a five-source configuration

to switch between having two nulls and having none; the second changed a seven-source

setup with two nulls into one with four nulls and thence into one with six nulls.

These particular configurations are particularly important ones to analyse since they have

the form of
�
-spots, prolific producers of flares. While our analysis remains, for the

moment, potential, we expect the topologies produced in a sheared scenario to be little (if

any) different.

That said, a potential field is insufficient to model magnetic breakout; the breakout, is due

to shearing around a photospheric neutral line (or ü ~ � %
surface) rather than a simple

increase of flux in the central source. Moreover, our form of increase - implicitly, the

distant balancing source grows with the � �� - is pretty unrealistic.

However, we can lay foundations for the application of the seven-source bifurcations to

the Magnetic Breakout Model, considered in the following chapter. We conjecture that

the topological changes produced by shearing the field near a neutral line in a
�
-spot
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D

Figure 3.5.18: Behaviour for first coronal bifurcation, between two coronal nulls and four. The

initial configuration is similar to the five source case (Figure 3.3.12), except that only three separa-

tors are present (top left). As before, the fan surfaces buckle in (top right) and form a second-order

null (bottom left) which splits into two new nulls (bottom right). The peculiar global behaviour is

not shown.
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Figure 3.5.19: Zero surfaces in the plane for seven-source cases. Left, a two-null case and right, a

six-null case. There are no qualitative differences in the plane.

Figure 3.5.20: Detail of seven-source zero-surfaces at �*® °U¹ Ã ¿ (left), � ® °:¹ »
(centre) and� ® °:¹ º|¿

(right). The zero line (where the dotted and dashed lines cross) is outside the � -zero

surface (solid line) at �Á® °:¹ Ã ¿ but outside at ��® °:¹ º|¿
; it crosses the boundary near ��® °U¹ »

.
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C3 C6

5 4

C3 C6

5 4

C5 C4

Figure 3.5.21: Separator changes for first seven-source bifurcation. There are originally three

separators involved; these become five in the same way as the five-source coronal bifurcation. Ad-

ditionally, a sixth separator is created between the two original coronal nulls.

C6C3

1 2

C3 C6

C2

1 2

C1

Figure 3.5.22: Separator changes for second seven-source bifurcation. There are originally four

separators involved; these become five in the same way as the five-source coronal bifurcation.
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Figure 3.5.23: Connectivity graph for seven-source bifurcations
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are similar to the changes produced by the seven-source bifurcations, even if produced

by a different means. We plan, in the medium term, to develop simulations to test this

hypothesis.

We also develop the method of Molodenskii and Syrovatskii (1977) for finding coronal

nulls using zero surfaces. This process in fact explains why Inverarity and Priest (1999)

were unable to find any more than one coronal null with their configurations of a single

positive source surrounded by negative sources on a hexagonal network. The V -zero sur-

face must lie between the positive source and the each negative source - in fact, is lies

between the positive source and the nearest photospheric null (all of which lie approxi-

mately on the network boundaries). Since there is only one
n o -zero curve emanating from

the central source, this is the only such curve that can cross the V -zero surface, and hence

there is only one coronal null.
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Chapter 4

The Magnetic Breakout Model

But through the flood-gates breaks the silver rain,

And with his strong course opens them again.

William Shakespeare, Venus and Adonis, 959-60

4.1 Abstract

The Magnetic Breakout Model describes how the application of shear to a neutral line

in a delta-sunspot can cause low-lying field to ‘break out’ through an overlying coronal

arcade, allowing the release of magnetic energy. It has been suggested as a process which

could trigger an eruptive flare. We construct a simple topological representation of a delta-

sunspot region and show that magnetic breakout can be achieved by way of topological

bifurcations in the corona. We also find a new bifurcation, the coronal local separator

bifurcation, in which two new null points are created well above the source plane.

72
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4.2 Introduction

4.2.1 Delta sunspots and magnetic breakout

A delta sunspot is defined as two opposite-polarity sunspot umbrae sharing a common

penumbra. It is well-known that such configurations are prolific producers of flares. An-

tiochos (1998) found that delta sunspots are the simplest configurations with sufficient

complexity to allow a magnetic breakout to occur.

The Magnetic Breakout Model was proposed by Antiochos et al. (1999) and developed by

Aulanier et al. (2000) as a mechanism for the initiation of a coronal mass ejection (CME).

In this model, shear is applied to initially low-lying field which lies beneath an unsheared

coronal arcade. The shear causes the low-lying field to rise, and the overlying arcade to

reconnect with other flux systems. Crucially, this reconnection reduces the amount of

magnetic flux restraining the low-lying field, and eventually weakens it to the extent that

the low-lying field can ‘break out’ and connect to distant flux systems. This is shown in

Figure 4.2.1.

In this chapter, we will model a delta sunspot region using MCT and find that adjusting

certain parameters can effect just such a breakout. We make particular use of an equation

(Equation 1.13) adapted from Longcope and Klapper (2002) connecting the number of

photospheric flux domains ( � � � ), coronal flux domains ( � � � ), separators ( � hUh ), photo-

spheric null points ( _ � ), coronal null points ( _ � ) and sources � :

� � � ��� � � � � � � hUh 
 � � h 
 � � � h � � � (4.1)

as described in Section 1.3.

4.2.2 Our model

We model a delta sunspot in MCT in the following way: a central, positive source (the

parasitic spot) is surrounded by a ring of negative sources (the parent spot). Flanking

this is a second positive region, corresponding to the partner sunspot of the parent and

consisting of two sources. This is shown in Figure 4.2.2.

We perform three MCT experiments. In the first, the strength of the central source is
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N2 N3 P_outP_in N2 P_in N3 P_out

Figure 4.2.1: Representation of magnetic breakout, after Aulanier et al. (2000). The flux near

the neutral line between ����� and � Ã is subjected to shear, which forced it to rise and ‘break out’

explosively through the overlying field, represented by the dashed line.

P5

P4

N2 N3

N1

P0

Figure 4.2.2: Initial source configuration. The stars represent sources and the solid lines contours

of zero vertical flux at a small height ��� above the photosphere.
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Source Position Strength % )���n � � o´� % + d� @ ) % � @ � % + 
 @� � ) 
 � � 9 � � 
 % bûú � % + 
 @� � ) � � 9 � � 
 % bûú � % + 
 @ ¢ ) % � 
 � � % + � bûú ú ) � � � 9 � � @:bûú � % + � bûú
Table 4.1: Initial positions and strengths of sources.

increased and the changes in topology tracked. The second experiment is similar, except

that instead of increasing the central source strength, we change the location of certain

sources; lastly, we find the bifurcations due to changing the force-free field parameter P .

Of course, none of these experiments represent the true behaviour of a flaring delta

sunspot, in which the field near the polarity inversion line around the parasitic spot is

sheared. However, increasing the source strength mimicks the rising of the field, while

increasing P reproduces the change in helicity such shearing causes.

In the following section, we analyse the changes in the magnetic skeleton brought about

by altering these parameters. We then discuss the nature of the bifurcations involved

before we conclude with a discussion of these results.

4.3 Results

4.3.1 Source strength experiment

In this experiment, we vary the strength d of the central source, located near the origin,

between d � @Kb � and d � @Kb ý . For lower values of d , a coronal null can exist, but it has no

relevance to our breakout model.
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Figure 4.3.3: Topologies for
¶|¹ �"! ¼$# ¶1¹ ���

(top),
¶1¹ ��� ##¼%# ¶|¹ »'&

(middle) and
¶|¹ »�& #©¼

(bottom). Full captions overleaf.
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Figure 4.3.3: Top: Initial topology for
¶|¹ �(! ¼)# ¶1¹ ���

. Five null points (dots) exist; their spines

represented by thick lines. The fan of * ¶ forms a dome following the spine of null þ5Ã . The fan of* � runs along the spines of þ�Ã and þ,+ . The fan of * ¿ forms an outer dome following the spine ofþ,+ . The fan of þ5Ã is a dome which follows the spines of * ¶ and * � ; finally, the fan of þ-+ forms

a wall running along the spines of * � and * ¿ . Separators (dashed lines) connect * ¶ to þ�Ã ; þ�Ã to* � ; * � to þ-+ and þ-+ to * ¿ .
Centre: Topology after coronal local bifurcation, ¼�® ¶1¹ ¿

. Two new nulls ( þ º and * » ) appear. The

fans of * ¶ and * ¿ are unchanged; that of * � is now bounded above by the spine of þ º . The fan

of new null * » forms a dome bounded by the spines of þ º , þ-+ and þ5Ã . The fan of þ�Ã is bounded

by the spines of * ¶ and * � ; in combination with the fan of þ º (which is bounded by the fans of* » and * � ), it forms a dome enclosing the flux from central source � ° . Finally, the fan of þ-+ is

bounded by the spines of * ¿ and * » . There are six separators.

Bottom: Topology after spine-fan bifurcation. The spine of coronal null * » now connects to the

balancing source. The fan of * ¿ no longer forms a dome, and connects to � ° . It is bounded by the

spines of þ�Ã and þ º . The fans of * ¶ , * � and * » are unchanged. The fans of þ5Ã and þ º remain

bounded in part by the spine of * » and now connect to the balancing source. The fan of þ,+ is now

bounded only by the spine of * » .
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Figure 4.3.4: Connectivity graphs initially (left), after a coronal local separator bifurcation (mid-

dle) and after a global spine-fan bifurcation (right). There are initially ten flux domains, with four

independent circuits. The local bifurcation does not change the domain graph; however, the global

spine-fan bifurcation allows flux to connect � ° to �/. . This adds a new gv theflux domain and a

new circuit into our reckoning.

Range @Kb � B d [ @:b �0� @:b �0�21 d [ @Kb � � @:b � �21 d
Purely coronal domains ( � � � ) 0 0 1

Separators ( � hUh ) 4 6 7

Coronal null points ( �,� h ) 0 2 2

Table 4.2: Numbers of coronal domains, separators and coronal null points for different stages of

our model. The number of domains, sources and null points in the photosphere remain constant

at �-354/® ¶½°
, 	 ® º

and �-3 � ® ¿
, respectively. All three situations satisfy Equation 4.1:�,36487	Ã��:9�4 ®/Ã�� �'� Â;�-3 � Â�Ã�� 9 � 7<	 .

For @:b � [ d B @:b �0� , the topology has no coronal nulls. The configurations for all three

states are shown in Figure 4.3.3, and the domains in Figure reffig:mbo:domains. There

are five photospheric null points, comprising three negative and two positive nulls. There

are four separators connecting these, and ten flux domains (of which none are coronal)

exist. Flux from the central source
 %

is prevented from connecting to the balancing

source �>= by the fan of null ü � , which forms an inner dome; this is in turn contained

by an outer dome comprising the fan of the null ? ú .

At d 6 @:b �0� , a local bifurcation occurs. Two null points, one of either sign, are created

well above the source plane. The bifurcation is analysed in some detail in Section 4.4.

The photospheric arrangement of spines and fans remains unchanged, although the coro-

nal topology does change significantly. Now six separators connect the seven nulls, al-

though the domain graph is unchanged. However, this bifurcation is a necessary step

towards a breakout, although the outer dome remains intact. The inner dome now con-
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sists of the fans of ü � and üA@ , which meet at the spine of ? � . Equation 4.1 remains valid,

as shown in Table 4.2.

At d 6 @:b � � , a global spine-fan bifurcation occurs. One of the spine field lines of the

negative coronal null ( üB@ ) changes its connectivity; before the bifurcation, it connects

to source � �
; afterwards, it is connected to the balancing source �>= , a large distance

away. In this case, there are seven separators and eleven flux domains, one of which is

coronal. Equation 4.1 remains true, as shown in Table 4.2.

The new flux domain connects the central source
 %

to balancing source �C= - the flux

originally constrained by two domes has ‘broken out’ to connect to distant flux systems.

4.3.2 Source location experiment

In this experiment, we begin with a configuration identical to the previous subsection,

except that d is fixed at a value of @:bûú . The topology is that shown in the centre of Fig-

ure 4.3.3.

We will begin by moving the source
 ú in various directions to try to recreate the spine-

fan bifurcation found in the previous subsection. Secondly, we will analyse the topologi-

cal behaviour caused by moving the other outer positive source
 ¢ .

We find that moving the source
 ú in the negative

n
-direction causes the same spine-fan

bifurcation at approximately
) @Kb ýED � @Kb ú + . Many different directions also give the same

bifurcation; the line of bifurcation is plotted in Figure 4.3.5.

Moving
 ¢ , though, has a somewhat different effect, although with similar overall results.

We choose to examine the effects of moving the source ‘north-west’ (that is to say, in the) 
 Fn � Fo + direction). Instead of the spine of ? � bifurcating with the spine of ? ú immedi-

ately, three bifurcations take place. Firstly, the spine of ? ú and the fan of ? @ undergo a

spine-fan bifurcation, before the spine of ? � and the fan of ? @ do the same thing. This

leaves the topology effectively a reflection of that in the centre of Figure 4.3.3 along a line

through ? ú and ü ¢ ; continuing to move
 ¢ in the same direction allows ? � and ? ú to

bifurcate as before.
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Figure 4.3.5: Bifurcation diagram for spine-fan bifurcation between * ¿ and * º . If source � ¿
is placed to the left of the line, the spine of * » connects to the balancing source at infinity; to the

right, it connects to source � Ã .
4.3.3 Force-free field experiment

In this experiment, we fix d � @Kb � and the source positions, while changing the parameterP of a linear force-free field. We find that decreasing P results in three spine-fan bifur-

cations, in an identical sequence to moving
 ¢ , with the final bifurcation occurring atPHG 
 % b % ý @ . If instead we increase P , we find that a single spine-fan bifurcation between? ú and ? � takes place when P>G % b � @|ú . This, however, is a large value for P to take, and

the region of validity for the force-free approximation becomes small.

4.4 Bifurcation analysis

Until recently, it was tacitly assumed that all local bifurcations - ones in which null points

are created or destroyed - occur in the source plane. Coronal nulls in particular were

thought to owe their existence to the local double-separator (or pitchfork) bifurcation

(Brown and Priest, 2001), in which one null in the source plane becomes three.

The local bifurcation found at d 6 @:b �0� , however, clearly does not take place in the

source plane. This is a new type of bifurcation, which we will call the coronal local

separator bifurcation. In particular, this is a three-separatrix variety; a similar (although
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more complex) bifurcation is possible involving four separatrices, as discussed in the

previous chapter.

The bifurcation process is depicted in Figure 4.4.6. Two fan surfaces (from ü � and ü ¢ )

buckle together and eventually meet. At this point, a second-order null point is formed,

which subsequently splits into two new coronal nulls. The fans are now bounded by the

spine of the new negative null ?$@ ; their lower parts are replaced by the fan of the new

positive null ü � . The other fan involved, that of ? � , is now bounded by the spine of ü � ,
with its upper part replaced by the fan of ?$@ . In this way, the three separators originally

involved become four.

It is worth stressing that the dome enclosing the central flux (from
 %

) now consists of

two separatrices (from ? � and ?%@ ), which are both bounded by - and inextricably linked

to - the spine of ü � .
It is, however, the global spine-fan bifurcation that allows the breakout to take place. This

bifurcation was studied by Brown and Priest (1999a). It involves two null points of the

same sign (in this case, negative nulls ?%@ and ? ú ); the spine of one passes through the

fan of the other, changing the connectivity of both.

In particular, the fan of ? ú connects to the central source
 %

, and no longer forms a

dome enclosing all of the central flux. In addition, the separatrices of ? � and ?%@ , which

previously combined to form a dome, are opened up by the connection of ü � ’s spine to

infinity.

In this way, there is no longer a barrier separating
 %

and �C= , and flux can connect

these two sources. This connection is the topological analogue to breakout.

4.5 Discussion

In this chapter, we have shown that a simple model of a delta sunspot region can be made

to display behaviour topologically similar to the breakout model proposed by Antiochos

et al. (1999).

Increasing the flux of the parasitic spot, moving flux sources, and altering the force-free

field parameter P all lead to a global spine-fan bifurcation allowing flux to connect the
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Figure 4.4.6: Bifurcation behaviour for coronal local separator bifurcation. Two fan surfaces

buckle together (top right) before joining together in a second-order null point. This splits into two

first-order nulls; the original buckled fans and the fan of the new positive null þ º are now bounded

by the spine of the new, negative null * » . The fans of * » and * � are both bounded by the spine ofþ º . Where there were originally three separators, there are now four.

Ninf
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Figure 4.4.7: Global separator bifurcation. Initially, the spine of the lower null ( * º ) connects to

the right ( � Ã ), while the fan of the upper null ( * ¿ ) connects to the left (to �I+ and � ¿ ). The two

approach each other until at the point of bifurcation, the spine lies in the fan plane. After bifurcation,

the spine of * º connects to the balancing source �/. and the fan of * ¿ connects, additionally, to� ° .
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parasitic spot to distant flux systems.

It is worth re-examining Figure 4.2.1 in this new, topological light. It is clear to see that

the thick solid lines represent the skeleton of the lower coronal null ?$@ (its fan comprising

the more horizontal lines, and its spine the more vertical ones) while the thick dashed lines

are the separatrix surface of photospheric null ? ú .

It is, however, important to recognise the limitations of our model. Our depiction of a delta

spot as a small number of point sources is a rather crude one; it seems likely, though, that

more realistic models would behave similarly. In the future, we plan to analyse MDI data

from a flaring active regions in a similar way.

This model also ignores the energetics of the situation. In particular, a potential field is in-

capable of storing magnetic energy to be released in an explosive event, so it is impossible

at this stage to state that this is the mechanism which allows a rapid, dramatic breakout.

We have also detailed a new, coronal local separator bifurcation. This bifurcation allows

two null points to be created or destroyed well above the photosphere. It appears to be a

critical stage towards magnetic breakout.

This model provides a step towards a more complete topological understanding of the

magnetic breakout model. In time, these steps will hopefully lead to new insights into

some of the processes involved in dynamic coronal magnetic events.
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Chapter 5

Elemental Flux Loops

Loney was watching the river in his mind, the loops and bends as gracefully etched in

the winter cover as a blue racer snake frozen in the grass. Loney always wondered

how that river knew where to bend, why it wandered with such feckless purpose. He

wondered if it always sought the lowest ground, or was his mind such a shambles that

he assumed there was a reason behind its constant shifting?

James Welch, The Death of Jim Loney.

Abstract

The photosphere possesses many small, intense patches of magnetic flux. Each of these

patches (or sources) is connected magnetically through the corona to several sources of

opposite polarity. An elemental flux loop consists of all of the flux joining one such source

to another. We find that each source is connected to twenty other sources, on average, and

that the typical flux and diameter of elemental loops in the corona are @ % G I Mx and
� %K%

km; there are approximately 17 separators for each source. We also model a typical large-

scale coronal loop consisting of many elemental loops and determine its complex internal

topology. Each upright null lies at the end of about 22 separatrices, which tend to be

clustered together in trunk-like structures, analogous to river-valleys in a geographical

contour map. Prone nulls correspond to saddle points, while their spines are analogous to

84
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watersheds.

This work has been accepted by Solar Physics (Beveridge et al., 2003).

5.1 Introduction

Since magnetic loops are the fundamental building blocks of the corona (Rosner et al.,

1978), it is natural to seek to determine their nature, including their size distribution and

topology.

Coronal loops may be observed in soft x-rays and in EUV. Their size and discrete nature

have been attributed to their being anchored in small-scale photospheric elements (Litwin

and Rosner, 1993). An elemental flux loop can then be defined as comprising all the field

lines anchored to a given pair of source elements.

Our aim here is to develop a model for elemental flux loops, from which we might under-

stand their magnetic properties. A key question then is: How many photospheric elements

of opposite polarity are interconnected through the corona? Since it is possible that sep-

arator reconnection (Priest and Titov, 1996; Galsgaard and Nordlund, 1997; Longcope,

1996; Galsgaard et al., 2000) contributes to coronal heating, it is important to find in

particular the density and distribution of separators.

We model a large-scale coronal loop (a super-loop) anchored in unipolar areas of an

active region. Each unipolar area consists of a large number of elemental sources, with

flux JÇ6 @ % GLK Mx (Stenflo, 1994). Following Longcope and van Ballegooijen (2002), we

identify the pattern of interconnections between such sources.

In the first part of our analysis, we examine the topology of a source plane containing a

large number of point sources, and how it varies with the distribution of flux and fraction

of flux with a particular sign. In particular, we find an approximation for the number of

upright nulls in each case, from which the number of prone nulls can be calculated.

In the second part, we examine the number and distribution of separators when a strictly

positive region is connected to a strictly negative region. We find a large number of

magnetic separators within the super-loop (roughly 17 for each source of a given polarity).

These have a tendency to be clustered closely together.
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Finally, we deduce that each source is connected to, on average, twenty opposing sources;

this leads immediately to the conclusion that an average elemental loop will have a fluxJNM�6 @ % G I � n
, corresponding to a diameter of around 200 km in a coronal field of typical

strength. A similar estimate is obtained by Priest et al. (2002).

In Section 5.2, we outline our model; in Section 5.3 we discuss the topology of the source

plane. Section 5.4 examines our results on separators and with the loops themselves. We

conclude in Section 5.5 with a discussion of our results.

5.2 Model

Following Longcope and van Ballegooijen (2002), we consider a magnetic super-loop

with a large aspect ratio geometry, as depicted in Figure 5.2.1: the loop length is much

greater than its radius, and for simplicity, we treat it as approximately straight. At each

end is a boundary representing a section of the photosphere and containing small, discrete

flux sources. One end represents the positive polarity of an active region and the majority

of its photospheric sources are positive. Unlike Longcope and van Ballegooijen, we do not

restrict ourselves to strictly unipolar source planes. The result is a magnetic carpet layer

below the merging height (Schrijver et al., 1997; Parnell, 2000; Priest et al., 2002). In our

analysis, we assume the distance between these sources is large enough in comparison to

their size that we can treat them as point sources.

We perform two numerical experiments, detailed below: the first examines the topology

of the magnetic field within the source plane, which includes a determination of the pro-

portion of upright nulls due to a given source configuration. The second examines how

this topology relates to the coronal field, its separators and elemental coronal loops.

Each calculation in the two experiments is performed by a Monte Carlo method using nu-

merous realisations of source distributions. A single realisation consists of 1000 sources

whose positions are randomly generated to produce a planar Poisson point process of unit

mean density within a disc centred at the origin (Kendall and Moran, 1963; Longcope

et al., 2003). The mean separation of two sources is:

OZ �
P �� Z �) Z +RQ Z
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where the point distribution function for unit density is: ) Z + � �TS ZTU FWV0XZY �
and Z represents the distance between nearest neighbours in units of length such that the

mean density � � @ . This results in:
OZ � % b ú .

We perform two types of calculation, by making two different assumptions about the

source magnitudes. In one type all magnitudes are equal, while in the other type the

magnitudes are drawn randomly from an exponential distribution. We consider these two

cases in recognition of the fact that the true size distribution of fundamental flux elements

is unknown. Larger magnetic elements, such as those found in the quiet Sun (Schrijver

et al., 1997), show an exponential distribution of fluxes whose mean is J G @ % GR[ Mx.

Each of these elements is, however, composed of numerous fundamental elements of

typical size @ % GRK Mx.

The signs of the flux elements within a plane are chosen to produce a region with a pre-

scribed level of flux imbalance, by making a fraction \ of the sources positive. In the

positive end of the cylinder \�W % bûú while in the negative end \/[ % b ú . Since the topo-

logical properties of a magnetic field do not depend on sign, we need only consider cases

with
% bûú []\ 1 @Kb %

The first series of experiments characterises the magnetic field in the source plane. A

unipolar region interspersed with opposing flux elements will contain a magnetic carpet

within which their field lines close. The remaining field maps through the carpet to the

merging layer (and thereafter through the corona to a region of opposing polarity). To

clarify this, we determine how the density of both types of photospheric null point, upright

and prone, vary with flux imbalance \ .

The second of our experiments will apply the topology of the photospheric field to the

corona. In the model of Longcope and van Ballegooijen, the topology of the coronal field

is determined entirely by the topology of the field at each merging layer, rather than at

the photosphere (the coronal field is by definition unidirectional, so it maps the field lines

without changing their topology). The only cases where we can approximate the merging

layer topology by the photospheric topology are those without a magnetic carpet ( \ � %
and \ � @ ). We therefore restrict our consideration to the case \ � @ and furthermore

assume that the coronal field is unstressed, and therefore maps between merging heights

without distortion. Under these assumptions, separators occur along lines parallel to the
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cylinder’s axis. These coincide with the intersections of separatrix curves when the two

photospheric layers are superposed.

5.3 Topology of the source plane

In this section, we find the densities of prone and upright nulls as functions of flux im-

balance \ and the nature of source magnitudes. We do this by performing Monte Carlo

simulations of the source planes, repeating the experiment 1000 times for each set of pa-

rameters: firstly, the strength distribution (uniform strengths or exponentially distributed)

and secondly, the fraction of positively signed flux \ , which we examine for \ between

0.5 and 1.0 in steps of 0.1.

Each critical point of the field - each source and null point - corresponds to an extremum

in the source plane of the field’s scalar potential. A positive source or upright null corre-

sponds to a maximum of the potential; a negative upright null or source corresponds to a

minimum. A prone null, meanwhile, corresponds to a saddle point irrespective of its sign.

We determine the number of upright nulls by finding all the extrema of the potential. We

do this using two gradient masks, one of which associates with each point in a grid the

co-ordinates of the adjacent point with the highest value, while the other does so with the

lowest value. From this information, using a sufficiently fine grid, it is easy to find all of

the extrema reliably.

We then use a Newton solver to find the nulls near such extrema - this also removes from

our list of nulls any maxima or minima corresponding to sources - and lastly we ensure

that each of the nulls is indeed an upright null by examining the alignment of its spine

field line.

We average the number of upright nulls over the 1000 experiments. The results are given

in Table 5.1 and Figure 5.3; from these, we determine the number of prone nulls from the

Euler characteristic equation (Equation 1.10). We find the following relationship between

the number of upright nulls ( _-� ), the flux ( \ ) and the number of sources ( � ):

_!� �\¢ b % � U F�^6_ � ¨a`
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in the uniform case and _!� � � b ��� U F�^6_ � ¨a`
in the exponential case.

These results show that the less mixed a region, the more numerous the upright nulls; also

the uniform distribution of source strengths produces slightly more upright nulls than the

exponential distribution, approximately in the proportion 5:4.

5.4 Separators and flux loops

In this section, we find the density and distribution of separators in a super-loop and from

this calculate the average value for the size of an elemental loop. We deduce the number

of separators from the number of points where the projections of positive and negative

separatrices cross. As mentioned previously, this assumes a straight coronal field so that

the mapping is a simple overlay of the two topologies.

In the case where \ � @ , none of the field lines close back into the source region. This

implies there is no magnetic carpet, and we expect the topology at the merging height to

be quite similar to that at the photosphere: we expect trunks to form at the merging height,

but we do not expect the mapping to preserve relative areas. Since we are interested only

in the topology, we assume the merging height to have the same configuration as the

photosphere.

Section 5.3 found that the density of upright nulls in the exponential case with \ � @ isQ � � % bß@ % nulls per unit area. Since this density assumed a distribution of sources with

unit density,
Q � also denotes the number of upright nulls per photospheric source.

From the Euler characteristic (Equation 1.10), we deduce the density of prone nulls to

be
Q � � @ �bQ � � @:bk@ . This implies that there are approximately 11 prone nulls for

every upright null. Every prone null is the origin of exactly two separatrix curves within

the photosphere, each of which must end at an upright null since there are no negative

sources in the plane. This means that an average of about 22 separatrix field lines from

surrounding prone nulls lead to each upright null.

Figure 5.4.3 shows an example of the separatrix curves connecting prone to upright nulls.
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h hL

chromosphere chromospherecorona

positive photosphere negative photosphere

merging height merging height

conducting shell

a

Figure 5.2.1: A straight flux loop, after Longcope and van Ballegooijen (2002). The relative

dimensions have been exaggerated for clarity, whereas the model assumes a long, thin loop with a

small chromosphere so that c$dfegdih .

\ Q �
uniform exponential

1.0
% bß@K@�DKý � % b %:% ú:ú % b % D � ý � % b %K% ¢ D0.9
% b % úUýKý � % b %:%E� ý % b % ¢ � ý � % b %K%0� ¢0.8
% b % � ¢ � � % b %:% � ú % b % � @1ý � % b %K% � �

0.7
% b % @:@�ú � % b %:% @ @ % b %:% DKú � % b %K% @|ú

0.6
% b %K% ú:ý � % b %:% @ � % b %:%E� ý � % b %K% @ %

0.5
% b %K% � % � % b %:%K% @ % b %:% @1ý � % b %K%:% @

Table 5.1: Upright null density j0k (nulls per unit area) as a function of the fraction of positive fluxl
, when the source strength distribution is (left) uniform and (right) exponential.
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(a)

(b)

Figure 5.3.2: Plots of the flux imbalance
l

against the upright null density jEk when the source

strength distribution is (a) uniform and (b) exponential. The solid lines represent our fitted curves

of the form (a) mnk5®o+ ¹ °�prqTs�tvu � ÀRw and (b) mxk�® �U¹ Ã prqTs�tvu � ÀRw , where 	 is the number of sources.
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Figure 5.4.3: A part of a simulated photosphere, about 5 units by 4 units, where one unit is twice

the mean separation of sources. The sources (asterisks) determine the positions of the prone and

upright null points (diamonds and triangles, respectively). The separatrices of prone nulls (solid

lines) divide the plane into domains associated with a particular source. It can be seen that the

separators tend to run closely together in trunks (a prime example runs down the centre of the

diagram and ends at the upright null near
¯T°U¹ ¿>±S°:¹ ¿|²

). The spines (dashed lines) divide the plane

into domains associated with a particular upright null. Also plotted are contours of the potential y
where z$y ®|{ . It can be seen that path of a trunk is analogous to a river valley, while the spines

are analogous to watersheds.
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Figure 5.4.4: A part of two overlaid topologies, about 5 units by 4 units. The solid lines represent

the separatrices of one photosphere, the dotted lines those of the other. The crosses, where these

meet, mark separators. Where two trunks cross, a large number of separators occur in a tiny area.
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It is evident from this typical view that the separatrices tend to form trunks, where several

field lines run extremely close together - a clear example runs down the centre of the

figure and ends at the upright null near
) % b ú � % bûú + .

This tendency has important consequences for the density and distribution of separators

(and hence for the density of elemental loops), since if one trunk crosses the projection of

another, many separators can form in a very small area.

We next determine the locations of separators by superposing two realisations of the pho-

tospheric field, each of which is generated as described in the previous section. One of

these realisations represents the positive end of a loop, the other the negative boundary.

This superposition represents a mapping by way of straight coronal field lines.

Each crossing of the superposed photospheric separatrix curves is a separator. Figure

5.4.4 shows a piece of a superposition where the solid (respectively, dashed) curves are

the separatrix curves on the positive (respectively, negative) boundary. The separators,

where these lines cross, are marked by asterisks.

We then count the number of separators in a central subregion measuring 10 units by

10 units, and repeat this experiment 30 times. Were the points uniformly distributed so

that their counts obeyed Poisson statistics, we would expect to find �/}R~ � � Q }R~ � ) @ % 0 + �@ @ ¢ % � ¢ � in our @ % � @ % box. Instead we count @ �E� ú � ¢ � @ , which varies more than an

order of magnitude beyond expectation. This indicates that separators are not uniformly

distributed, but tend to form in clusters.

We explore the effect of clustering through a simple model in which all separators occur

in clusters of size � . These clusters are themselves distributed uniformly with densityQ�� � Q }R~ � 90� , where
Q }R~ � is the inferred separator density. A region of area ? will

therefore contain � � ��� � QE� ? � Q }R~ �E?590� clusters. Trials will yield � � counts centred

on this mean with Poisson deviation � ��� �R� � � . Thus the number of separators found

within area ? will be �B}R~ � � � �2}R~ � �8� � � �2}R~ � � � � . Our results are consistent with

a cluster size � G @ � ý , which would occur at the intersection of two trunks with eleven

separators each. Figure 5.4.5 shows this prediction against the actual results: in the lowest

70%, the prediction matches the results very well, although at the high end of the scale

we consistently find more separators than we predict.
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Given that there are around 1.1 prone nulls per unit area and each prone null has exactly

two separatrix field lines in the plane, each separatrix surface contains an average of

around @ @ b ¢ 9 � b � G ý separators.

As for the flux domains, we know there are
Q }R~ � separators per unit area, and hence in an

area with � sources, a total of _�}R~ � � Q }R~ � � . In an approach similar to Longcope and

Klapper (2002), we therefore apply Euler’s theorem:

\ � U 
 < ��� � (5.1)

where \ represents faces, U edges and < vertices, to the superposition of two boundaries.

In the superposition, every face represents a flux domain, so \ � _ � . We count as a

vertex all photospheric nulls and separators, so we have < � � ) _ � � _ � + � _�}R~ � vertices.

Edges are constituted by the parts of field lines joining vertices: that is, connecting two

separators, two nulls, or a null and a separator. There are U �\¢ _!� � � _ }R~ � edges.

Equation 5.1 then becomes

_ � � � _ � 
 � _ � � _�}R~ � � � �
where _ � is the number of domains. However, _ � 
 _!� � � ; moreover, in a large area,

we can ignore the 2. So, _-�56 ) ����Q }R~ � + � b
With our value of

Q }R~ � � @|ý'bk@ , we find _ � � � % bß@ � ; on average, then, each source

connects to about twenty opposing sources.

Stenflo-sized elements have a flux of J#6 @ % GLK Mx (Stenflo, 1994), so our loops have a

flux JNM�6 @ % G I Mx. Taking a typical coronal magnetic field strength of 10 gauss, we find

an average diameter for each flux loop of around 200 km, corresponding to 0.25 arcsec.

This is a little finer than the limit of TRACE resolution, and similar to the estimate of
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Figure 5.4.5: Cumulative histogram of separator number mW����� (solid line) against prediction

(dashed curve). There is very good agreement for the lowest 70%, although we find more sepa-

rators than predicted at higher values.
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Priest et al. (2002). It must be noted, however, that due to the propensity of separators

to form trunks, many of these flux loops are expected to be very thin indeed and to have

very little flux.

5.5 Conclusions

The magnetic carpet - the arrangement of connections between flux sources in the solar

photosphere - is an incredibly complicated, and forever-changing, structure (e.g., Schri-

jver et al., 1997; Parnell, 2000; Simon et al., 2001). New sources are constantly emerging

as old sources disappear; others coalesce to form larger sources, while others divide into

smaller ones. Yet others come together and cancel each other out.

An important aspect of studying the phenomena due to the carpet is to determine in detail

the topology due to its sources. Much progress has been made, both in the examination

of small numbers of sources (for instance, the three-source case has been completely

classified (Brown and Priest, 1999a) and a start has been made on four sources, both in

a balanced scenario (Beveridge et al., 2002) and in unbalanced cases (Brown and Priest,

1999b, 2001)) as well as in discussion of general concepts (Longcope, 2001).

Our analysis approaches the problem from a different angle, with a direct physical appli-

cation. It is one of the first studies to predict flux loop sizes from a theoretical standpoint.

We find that the separatrix surfaces in the photospheric planes have a tendency to form

trunks where many separators lie close together. One way to understand this is to consider

the magnetic potential � , where � � � � b
Supposing all of the sources to be positive, � has a local maximum at each source. At

each prone null in the source plane, the potential has a saddle point, and at each upright

null, � has a local minimum. By analogy to a geographical contour map, these trunks

can be seen to follow valleys of the potential. This analogy can be extended to include

the spines, which trace the watersheds of the potential landscape, as can be seen in Figure

5.4.3. One explanation for the valleys could be that, at a general potential null point, the

fan field lines are not equally spaced but aligned preferentially towards one of the fan

eigenvectors.



“weethesis”

2003/7/11

page 98�
�

�
�

�
�

�
�

98

We superpose two photospheric planes as an approximation to a straight super-loop. The

intersections correspond to separators, while the the spaces in the network are the elemen-

tal flux loops.

We find that many of these loops will carry very little flux - where trunks intersect, a large

number of loops and separators will occur in a small area. We expect this phenomenon

to be replicated at the merging height, and suspect that direct methods may find fewer

connections - it is unlikely that tracing field lines from sources would find all of the flux

loops that we do.

We now plan to extend this analysis of model fields to more realistic ones by extrapolating

MDI data. There remain, however, many questions even in this simplified model: is

separator heating more or less efficient than the separatrix heating proposed in the Coronal

Tectonics Model (Priest et al., 2002)? Why exactly do the trunks form, and what do they

represent? What happens physically when a large number of separators are clustered

together in a tiny space? Does reconnection in such clusters contribute significantly to

coronal heating?
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Chapter 6

Discussion and future work

The last word has golden rays.

Méret Oppenheim

6.1 Discussion

Magnetic charge topology is a relatively new means of investigating the properties of the

solar corona. While in some respects the subject is well-developed, in others it is in its

infancy.

In this thesis, we have attempted to develop it a little further, both in terms of our under-

standing of how magnetic field regions interact and in terms of physical applications for

the model.

In Chapter 2, we catalogued all of the possible topologies for a balanced potential sce-

nario with four magnetic point charges, finding that seven topologically distinct cases

exist. When there are three positive and one negative sources, an upright null state (U),

a separate state (S) and an enclosed state (E) are possible; when there are two sources of

each sign, a nested state (N), a detached state (D), an intersecting state (I) and a coronal

null state (CN) can exist.

99
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E S
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I
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GSxQB GSpQB

LDSB

Figure 6.1.1: Interactions between topologies (circles) and bifurcations (arrows).

The field configuration can change between these by means of several bifurcations: two

global bifurcations proper (the global separator (GSB) and the global spine-fan bifurca-

tions (GSF)), two global quasi-bifurcations (the global separatrix (GSxQB) and the global

spine (GSpQB) quasi-bifurcations), and two local bifurcations (the local separator (LSB)

and the local double-separator bifurcations (LDSB)).

The interactions between the topologies and bifurcations are shown in Figure 6.1.1.

In Chapter 3, we lay the foundations for a topological cartoon of the Magnetic Breakout

Model, by considering local bifurcations which take place above the source plane. These

allow flux initially enclosed by overlying structures to ‘break out’ and connect to distant

flux systems, as developed in Chapter 4.

Chapter 5 represents something of a change of direction, dealing with large numbers of

point sources, which we use to model elemental flux loops. We consider these to be

the building blocks for large-scale ‘superloops’ which might represent the loop structures

seen in TRACE images. We find, in configurations of mixed polarity, results for the den-

sity of upright nulls as a function of the flux imbalance; by superposing two regions (each

containing many sources of one polarity) we calculate characteristics of the separators

that ensue, and find an average diameter for elemental loops of around 200km.
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6.2 Future work

Two of the critical areas for the development of MCT, and indeed the whole of solar

physics, are flares and coronal heating, both of which we have touched upon in this thesis

(in Chapters 3, 4 and 5, respectively).

To provide realistic, physical models, though, MCT in this form is at best limited because

of its insistence on potential fields. This insistence is based largely on ease of computing

- a potential field has a simple, analytical expression from which it is easy and quick to

calculate field lines. It has many physical disadvantages, including the fact that magnetic

energy cannot be stored by a potential field, which is automatically in the lowest energy

state.

Linear force-free fields have (relatively complicated) analytical expressions, and some

thought has gone into force-free topology

A topological model for flares has frequently been considered in the past: Gorbachev

and Somov (1988) and Antiochos et al. (1999) were by no means the first. However, the

improved resolution of space-based telescopes such as TRACE allow us to examine the

corona more closely and infer more accurately coronal magnetic structures, and hence to

improve our models.

We intend to extend our potential analysis of a
�
-spot region to include magnetic shear

near the photosphere.

In this way, we hope to determine the three-dimensional magnetic skeleton of a ‘breakout’

situation, and how the topology changes between the two. We expect the bifurcation to

resemble those outlined in Chapters 3 and 4. By developing a force-free model, we may

also be able to analyse the energy available for release in such a situation.

As for coronal heating, we expect the interior structure of loops to play a significant role.

We plan to develop our simulations of straight loops to include dynamic and magnetic

carpet effects.

We also wish to investigate what significance the close clustering of separators has. A

suggestion for this work is to extend the Longcope and van Ballegooijen (2002) model

of a dynamic super-loop to more complicated end-planes. We suspect that with even five

or six sources at either end, trunk-like behaviour, and hence separator clustering, will be



“weethesis”

2003/7/11

page 102�
�

�
�

�
�

�
�

102

observed.

To this end, we plan to work with the Coronal Tectonics Model of Priest et al. (2002). In

this model, coronal heating is effected by the movement of flux tubes against each other,

in analogy to geophysical plate tectonics. Numerical simulations so far undertaken have

failed to take any topological effects into account.

Lastly, our understanding of the uses of MCT is constantly changing. A vital part of any

future work is the development of more sophisticated tools for determining the topological

nature of solar magnetic fields, and a wider understanding of their implications.
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Glossary
A glossary of some terms used in this thesis. The reference given is generally to the first

or fullest definition of a term in the body of the thesis.

Bifurcation: A topological change from one state to another (Section 1.4).

Connectivity: The existence of flux between two source regions. All field lines beginning

at one source and end at another form a region of connectivity (Section 1.3.2).

Corona: In reality, the outer layer of the solar atmosphere (Chapter 1). In MCT, it is

represented by the half space above the photosphere (Section 1.3).

Coronal null: A null which doesn’t lie in the photosphere (Section 1.4.1).

Delta spot: A sunspot group in which a substantial amount of flux of one polarity lies

withing the penumbra of the main sunspot of opposite polarity (Section 4.2).

Domain graph: A graph representing all of the flux domains in a given configuration of

sources (Section 1.3.2).

Elemental loop: A small loop, consisting of all the flux connecting two sources, of which

superloops are made up (Section 5.1).

Euler characteristic: Equations 1.10 and 1.11, which relate the numbers of positive and

negative sources and nulls in an MCT configuration.

Fan: The plane of field lines near a magnetic null diverging from or converging on the

null (Section 1.3.2).

Flux domain: All of the field lines connecting two source regions (Section 1.3.2).

Force-free: A field satisfying Equation 1.6,
�N��� � O

, or
����� � P )TQU+S�
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Global bifurcation: A bifurcation which changes the global structure of the field without

creating or destroying a null (Section 1.4.2).

Half separator: A separator which lies along the intersection of two flux domains rather

than four. This is a symptom of a homovertebraic null (Section 1.3.2).

Heterovertebraic null: A null with two spine sources. (Section 1.3.2).

Homovertebraic null: A null with only one spine source. (Section 1.3.2).

Linear force-free field: A force-free field where P )RQ>+ � P � (Section 1.2).

Local bifurcation: A bifurcation in which a pair of nulls are created or destroyed (Sec-

tion 1.4.1).

Magnetic Breakout: the opening of initially low-lying field due to shearing; reconnection

at a null point high in the corona weakens the overlying field until the lower flux can

escape explosively (Chapter 4).

Magnetic Charge Topology (MCT): A technique for using point sources to construct mag-

netic fields (Section 1.3).

Negative null: A null in which the spine sources are positive and the fan field lines diverge

from the null (Section 1.3.2).

Null points: Locations at which the magnetic field vanishes (Section 1.3.2).

Photosphere: In reality, the thin layer of the solar atmosphere closest to the surface (Sec-

tion 1.1); in MCT, the plane in which the flux sources lie (Section 1.3).

Photospheric domain: A flux domain which includes field lines lying in the photosphere

(Section 1.3.2).

Photospheric null: A null lying in the same plane as the flux sources (Section 1.3.2).

Positive null: A null in which the spine sources are negative and the fan field lines con-

verge on the null (Section 1.3.2).

Prone null: A photospheric null whose spine lies in the source plane (Section 1.3.2).

Proper separator: A separator which lies on the boundary of four flux domains (Sec-

tion 1.3.2).
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Purely coronal domain: A flux domain with no photospheric field lines (Section 1.3.2).

Quasi-static equilibrium: The assumption that structures moving far slower than the

Alfvén speed can be treated as stationary (Section 1.2

Reynolds number (magnetic): The ratio of the advection term to the diffusion term in the

induction equation 1.4; it works out to be

2 3 � <>� ; �.
(Equation 1.5)

Separator: A field line connecting two magnetic null points, or equivalently the intersec-

tion of two separatrix surfaces (Section 1.3.2). See also proper and half separators.

Separatrix: A surface made up of fan field lines, dividing space into different flux domains

(Section 1.3.2).

Skeleton: The basic structure of a magnetic field, consisting of any null points, separatrix

surfaces, spine field lines and separators (Section 1.3.2).

Spine: An isolated field line leading into or away from a null point, perpendicular to the

fan (Section 1.3.2).

Spine sources: The sources to which the spine field lines of a null connect. (Section 1.3.2).

Superloop: A theoretical construct representing a coronal loop. It connects two boundary

layers, one of which contains many positive sources, and the other of which contains

many negative sources (Section 5.1).

Trunk: A large number of separatrix surfaces very close together (Section 5.4).

Upright null: A photospheric null whose spine is orthogonal to the source plane (Sec-

tion 1.3.2).

Zero curve: A curve on which two magnetic components (usually ü { and ü } ) are equal

to zero (Section 3.2).

Zero surface: A surface on which one of the magnetic components (e.g. ü ~ ) is equal to

zero (Section 3.2).
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Appendix A: Some useful proofs

Theorem 1 A separator connects two nulls if and only if the fan of one null is bounded

in part by the spine of the other (Figure 6.2).

Proof: Let a separator connect two nulls, so that their fan planes intersect. Consider field

lines beginning a small distance
�

from one spine (without loss of generality, the red one).

These field lines approach the red null and spread out close to the red fan. Because the

red and blue fans intersect in the separator (which ends in the null), the blue fan must

separate these field lines into different flux domains. One of the field lines must lie in the

blue plane. Since
�

can be reduced without limit, the blue fan must be bounded by the red

spine. A similar argument can be used for the red fan and the blue spine.

For the other implication, let one fan (blue) be bounded by the spine of the other null

(red). Consider field lines in the red fan plane. Because the red spine and red fan are

non-coplanar (in the potential case, they are orthogonal), the red fan and blue fan must

intersect, giving rise to a separator between the two.

Theorem 2 No stable coronal nulls exist in a three-source configuration.

Proof: Assume an isolated coronal null exists. The magnetic field is given by Equation

1.8:��)TQU+ �
hi ekj G dfe

Q 
 Q `8 Q 
 Q>` 8 J � (A.1)
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Fan
Source

Null
Spine

Figure A.2: A separator joins two nulls if and only if the fan of one is bounded by the spine of the

other.

with _ � �
.

There exists, by assumption, a point
Q�� � )TnW� �po � � V ��+ where

��)TQT�]+ � O
and V � W %

.

Without loss of generality, we can re-scale the geometry so that one source lies at the

origin with strength @ , and a second source lies at the point
) @ � % + . This gives a simplified

equation for the field:��)TQU+ �
Q8 Q 8 J � d G Q 
�ª«8 Q 
7ª« 8 J

� d 0 Q 
 QU¥8 Q 
 QU¥ 8 J b (A.2)

For photospheric sources, the V -component of Equation A.2 is given by:% � V8 Q 8 J � d G V8 Q 
�ª« 8 J
� d 0 V8 Q 
 Q ¥ 8 J b (A.3)

Since, by assumption, VXW %
, it follows that% � @8 Q 8 J � d G @8 Q 
�ª« 8 J
� d 0 @8 Q 
 Q ¥ 8 J b (A.4)
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The o -component of A.2 is given by% � o8 Q 8 J � d G o8 Q 
�ª« 8 J
� d 0 o 
 o 08 Q 
 Q ¥ 8 J � (A.5)

or, using Equation A.4,

% � d 0 
 o 08 Q 
 QU¥ 8 J (A.6)

This means that the third source must lie on the
n

-axis, and the three sources are co-

linear. Because of the symmetry of such a case, it is topologically unstable, contradicting

our original assumption.

In fact, the symmetry implies that the null is not isolated, but forms part of a null ring.
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Appendix B: Details of

calculations and graphics

Throughout this thesis, nulls have been found, field lines calculated, topologies depicted

and bifurcation diagrams drawn, without any explanation as to the methods used to do so.

This Appendix aims to redress that imbalance. Many of the codes used were developed

by Daniel Brown.

B.1 Null points

Null points are found using a Newton-Raphson solver. Initial guesses are generated in

several ways: in some cases, it is relatively clear where nulls ought to be and possible to

make an explicit guess. In others, the zero surfaces method is automated for use in the

source place. In still others, a three-dimensional network is used to find these surfaces in

space.

B.2 Skeletons and field lines

The skeleton of the field is found by extrapolating certain field lines from the null points.

As described in Section 1.3.2, these spine and fan field lines are determined by the eigen-

vectors of the null matrix of Equation 1.9 near a null point « � .
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One of the eigenvalues � G is of opposite sign to the others; the eigenvector � G correspond-

ing to this eigenvalue determines the direction of the spine. We take the start point of the

spine field lines to be « �|� d � G .
The other two eigenvectors (e 0 and e J ) define a fan plane. We take the start points to be

x � )�� e + � x
�\� d�� �6� E )�� e + e 0 � EZ��� )�� e + e J5� , where

% [ � e [ ��S
and

a � @cb1b$b _ `'� h where_ `�� h is the number of desired fan field lines.

Field lines r
) � + are computed by integrating the field-line equation:

� Q ) � +� � �
� � Q�) � + �8 � � Q�) � + � 8 � (B.1)

beginning at some initial point r � , using a Runge-Kutta algorithm with variable step size.

B.3 Separators

Finding separators is not easy, since field lines tend to diverge away from null points. We

find approximate separators by examining the connectivity of fan field lines from each

null point. If the connectivity changes between two field lines beginning at x � )�� e + and

x � )�� e � G + , a separator field line must begin at x � )���+ for some
�

between
� e and

� e � G .
By gradually refining the value of

�
, we can usually approximate a separator for a good

part of its length. By applying the same approach at the null point to which the separator

connects, we can find an approximation for another section of the separator.

B.4 Drawing topologies

The topologies are plotted in three-dimensions by IDL; we then use the xfig package

to trace, clarify and add colour to the diagrams by approximating certain field lines as

splines.

Our approximate separators are treated as single field lines and turned into splines in the

same way.
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B.5 Drawing bifurcation diagrams

Bifurcation diagrams are automated as far as is possible - for instance, local double-

separator bifurcations are found by varying parameters until the sign of a null point

changes, and global separator bifurcations by tracking the connectivity of the separatrix

field lines.

However, the quasi-bifurcations are not easy to find automatically since they involve

changes at a large distance from the sources. These are simply found by inspection.

Once the data has been collected, we connect nearby bifurcation points using smooth

curves. There is some scope for inaccuracy in this stage, but the overall picture will be at

least approximately correct.
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Appendix C: An unlikely-looking

coronal null state

We have been unable to find a proof that a coronal null is impossible for a four-source

case with three sources of the same sign (without loss of generality, assumed positive),

although no such null has (so far as we know) ever been found.

In this Appendix, we show what the topology of such a state would have to look like and

provisionally discount it.

We make the assumptions here that upright nulls cannot undergo a local double-separator

bifurcation and that the four-source case lacks sufficient complexity to allow a coronal

local separator bifurcation.

Then, the basic state for such a configuration consists of two positive prone nulls (i.e.,

either the separate or the enclosed state). We assume that one of these nulls undergoes a

local double-separator bifurcation leaving the topology shown in Figure C.1.

The fan of the coronal null now forms a dome bounded in the photosphere by the spine

field lines of the remaining, positive null, both of which connect to the negative source.

These two, then, are connected by a half-separator (since the negative null is homoverte-

braic).

The reason this topology seems unlikely is that every local double-separator bifurcation

observed (as far as we know) has taken place along an existing separator. In this case, no

separator exists before the bifurcation.
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Figure C.1: Only possible topology for coronal null in four-source case with three sources of the

same sign. The fan of the coronal null forms a dome bounded by the fan of the blue photospheric

null. The separator between the two is a half-separator.
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