
Incompressible Hydrodynamics (Dana Longcope 11/16/07)

The incompressible limit of fluid mechanics is a very important and often misunderstood one.
Incompressibility is an approximation which is well satisfied by flows which are very subsonic. It is
therefore the appropriate limit for modeling almost all fluid dynamics with which you are familiar
— even in air (especially in air). It is a system in which almost all treatments must be non-linear,
so it is among the most fundamentally challenging in Physics.

We begin with the ideal fluid equations

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v (1)

∂v
∂t

+ (v · ∇)v = −∇p
ρ

+ g (2)

∂p

∂t
+ v · ∇p = −γp∇ · v (3)

Static equilibrium solutions to these, neglecting gravity, are a uniform pressure, p0. Assuming also
a uniform density, ρ0, the linearized equations become

∂ρ1

∂t
= −ρ0∇ · v1 (4)

∂v1

∂t
= −∇p1

ρ0
(5)

∂p1

∂t
= −γp0∇ · v1 (6)

where subscript 1 designates a perturbation.
Combining ∂/∂t of the divergence of eq. (5) with eq. (6) yields a single wave equation

∂2

∂t2
(∇ · v) = c2s∇2(∇ · v) , (7)

where cs =
√
γp0/ρ0 is the sound speed. This equation demonstrates that any divergence in the

flow field is part of a sound wave, and will propagate away at the speed of sound, cs. It s possible
to consider the flow without any sound waves by taking ∇ · v = 0 — by studying incompressible
flows.

A more rigorous way of approaching very subsonic flow is to consider the formal limit cs →∞.
That is to say, if a flow is truly slow compared to cs, then the sound speed may as well be arbitrarily
large. Applying this limit to eq. (7), without permitting infinite frequencies requires

∇2(∇ · v) = 0 . (8)

To solve this Laplace’s equation we need boundary conditions on ∇ · v. If our fluid is confined
inside expanding or contracting boundaries, then ∇ · v would be a positive or negative constant.
On the other hand, in an unbounded domain, such the outside air, the only possible solution is

∇ · v = 0 . (9)

One tends to think of air as compressible based on experiments with pistons. But you would find
it extremely difficult to compress any air by simply pushing it with your open hand. Indeed, your
only hope would be to move your hand at close to the speed of sound!
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Equation (9) is the condition of incompressibility. As we have just shown, it does not describe
a kind of fluid, rather it describes the state of the flow: Flows which are very subsonic will always be
incompressible. The smaller is the Mach number, M ≡ v/cs, the better will be the approximation
of incompressibility.

Once we adopt the hypothesis that v has no divergence (it is incompressible) we can address
the evolution of its curl, called the vorticity: ζ ≡ ∇×v. Taking the curl of eq. (2) gives the simple,
but disappointing equation

∂(∇× v1)
∂t

=
∂ζ1

∂t
= 0 . (10)

This recovers the fact that shear flow (flow with curl but no divergence) has no dynamics at linear
order: they are zero-frequency modes. In order to learn more about these flows — low Mach
number flows — we must study them non-linearly.

2 Equations of Incompressible Hydrodynamics

The starting point for incompressible hydrodynamics is the assumption that ∇ · v = 0. Using this
in eq. (1) reveals that Dρ/Dt = 0: density is advected by the flow. It is possible to use complicated
density functions, but the simplest, and most common version of the equations takes a uniform
initial ρ(x, 0) = ρ0. Since this is advected, the density remains forever uniform. After that the
equations of incompressible hydrodynamics are

∂v
∂t

+ (v · ∇)v = −∇p
ρ0

+ g (11)

∇ · v = 0 (12)

We show below that these are a complete, closed, self-consistent set of equations for v(x, t) and
p(x, t).

2.1 The role of pressure in incompressible hydrodynamics

The most puzzling aspect of the conversion of compressible equations (1)–(3) to incompressible
equations (11)–(12) is how the role of pressure changes. What happened to the equation of state,
(3) and how can we find pressure without it? The simplest answer, to which we return below, is
that we don’t need to know the pressure. In spite of this we can still try to find out what it is.
Taking the divergence of equation (11) now gives

∇2p = −∇ · [ ρ0(v · ∇)v ] = − S(x, t) , (13)

after using (12) and then fact that ∇ · g = 0 unless the fluid is creating its own gravitational field
(an interesting situation, but one we will not consider here). The expression on the right looks
daunting enough, but it is nothing but a complicated function of space once we know v(x). Thus
eq. (13) is a Poisson equation for pressure. In an unbounded domain we can solve it using the
Green’s function for ∇2 we know well from electrostatics:

p(x, t) = p0 − ρ0gz +
1
4π

∫
S(x′, t)
|x− x′| d

3x′

︸ ︷︷ ︸
p̃(x,t)

. (14)
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The second term will cancel out the gravitational field, g = −gẑ, while the third, p̃, depends on
the present flow field.

The pressure at a point x depends on the flow everywhere in space at that same instant. This
should seem puzzling. It means that as I drive my car, the air passing across my windshield is
affecting pressure way far ahead of me — instantaneously! This action-at-a-distance is a conse-
quence of taking the limit cs →∞. In actual fact, the pressure out ahead of me responds only after
sound waves have reached it from my windshield. Provided I drive well below the sound speed (700
m.p.h.) this time delay is very short and the effect may as well be instantaneous.

So why does the pressure depend on velocity rather than on thermodynamics (i.e. through eq.
[3])? One version of the answer is that equation (12) is a constraint on the flow field, and p now
plays the role of Lagrange multiplier, enforcing that constraint. This is analogous to a pendulum
bob suspended by an inextensible string of length `. The string tension must vary as the pendulum
swings. In an extensible string that tension force is proportional to the extension of the string
by Hooke’s law: Fr = −k(r − `). This extensibility leads to a kind of very fast normal mode,
mr̈ = −k(r − `) whose frequency of oscillation is

√
k/m . Assuming the string to be inextensible

means replacing Hooke’s law with a constraint, r = `, and a constraint force complete with Lagrange
multiplier. This is a good approach when the period of the pendulum is much,, much longer than
the Hooke’s law oscillations: k/mÀ g/`. In direct analogy, we use incompressible hydrodynamics
when the motion of the flow is much, much slower than the motion of sound waves. We thus replace
the compression modes, contained in eq. (3), with constraint equation (12).

It is also instructive to consider the typical magnitude of the pressure contribution, p̃. The
source term in (13) has typical magnitude S ∼ ρ0v

2/L2 where v is the typical flow speed and L is
a typical length scale. Using this in the integral from (14) shows that

p̃

p0
∼ ρ0v

2

p0
∼ v2

c2s
= M2 ¿ 1 . (15)

The flow therefore leads to fluctuations in the pressure field which are smaller than the ambient
pressure p0, by M2 ¿ 1. If it is so small why is it not dropped from eq. (11)? The answer is simply
that the other two terms in (14) disappear from the right hand side, leaving only −∇p̃/ρ0. This is
small, in some sense, but it is exactly as small as the terms of the left hand side.

How can we reconcile these fluctuation in pressure with incompressibility: ∇ ·v = 0? Equation
(3) says that

D

Dt

(
p

p0

)
=

D

Dt

(
p̃

p0

)
− ρ0g

p0
vz ' − γ∇ · v ,

which should vanish since ∇·v = 0. What incompressibility really means is that ∇·v is very, very
small and can therefore be approximated as zero. This is consistent with the terms on the left of
these relations, which are both very small provided or system size is L ¿ Hp = p0/ρ0g the scale
height of the atmosphere.

The fluid must therefore undergo a very small amount of compression, ∼ M2, in order for the
pressure to keep the flow incompressible. If this sounds contradictory, recall the inextensible string
whose length was fixed at `. In actual fact the string undergoes a very small extension in order for
Hooke’s law, Fr = −k(r − `), to produce the required force (a.k.a. force of constraint). Provided
the string is very stiff, k →∞, we may neglect this by saying r − ` ' 0.

Won’t that same compression also change the density, contradicting our assumption that ρ = ρ0?
Yes, but note that∇ρ does not appear in any of the fluid equations. We can thus expand ρ = ρ0+δρ,
and drop the perturbation everywhere since δρ ∼M2ρ0.
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2.2 The vorticity equation

The most informative way to study incompressible fluid dynamics is to eliminate the pressure from
them at the outset. Since p(x, t) is a kind of Lagrange multiplier, enforcing a constraint, we may
wish to use coordinates where the constraint is unnecessary. We first use vector identities to rewrite

(v · ∇)v = ∇(1
2 |v|2)− v × (∇× v) .

With this we can rewrite the momentum equation, (11), in the form

∂v
∂t

− v × (∇× v) = −∇
(

1
2 |v|2 +

p

ρ0
+ gz

)
. (16)

Taking the curl of this entire equation will eliminate the term involving pressure as well as gravity.
Using the vorticity ζ = ∇× v, we can write the resulting equation, called the vorticity equation,

∂ζ

∂t
−∇× (v × ζ) = 0 (17)

∇× v = ζ , (18)

where the second is just a restatement of the relation between v and ζ. The two equations form
a complete, coupled system for variables v and ζ, of which pressure is not a part. Thanks to the
second term in (17) they are non-linear, and will therefore be impervious to most known solution
methods.

Equation (17) can be written in a slightly more intuitive way using one more vector identity:

∂ζ

∂t
+ (v · ∇)ζ =

Dζ

Dt
= (ζ · ∇)v . (19)

This shows that vorticity can be changed by the flow itself. If the matrix ∂vi/∂xj has a positive
eigenvalue, then ζ will be amplified in the direction of that eigenvector. This is known as vortex
stretching. Tornadoes are a well-known manifestations of very high concentrations of vorticity. They
are created by a vortex stretching process. The more common (and less dangerous) phenomenon of
water swirling as it leaves a drain is another instance of vortex stretching. In that case ∂vz/∂z ≡
ω > 0 since the water speeds up descending the drain pipe. The ẑ component of equation (19),
Dζz/Dt = ωζz, shows that the observed swirling, ζz, should speed up with time.

3 Two-dimensional, incompressible fluid dynamics

The most illuminating setting for hydrodynamics is to consider flows within the x–y plane. That
is to say

v = vx(x, y, t)x̂ + vy(x, y, t)ŷ . (20)

The condition of incompressibility, ∇·v = ∂vx/∂x+∂vy/∂y can be satisfied by defining the velocity
in terms of a new function, ψ(x, y, t) known as the stream function. The velocity is defined in terms
of derivatives of this function

v = ∇ψ × ẑ =
∂ψ

∂y
x̂ − ∂ψ

∂x
ŷ , (21)
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so that ∇ · v = 0 for any function ψ(x, y, t).
The stream function ψ must never be confused with the velocity potential Φ, whose gradient

is used to generate irrotational flow: v = −∇Φ. Both are scalar functions whose derivatives give
velocity components, but the parallels end there. In fact the two scalar functions serve completely
opposite purposes. Irrotational flow, v = −∇Φ, is composed of nothing but sound waves, while
incompressible flow, v = ∇ψ × ẑ, includes no sound waves whatsoever. They are two mutually
exclusive situations. The most general two-dimensional flow would include both components: v =
∇ψ × ẑ −∇Φ. This representation is known as a Helmholtz decomposition; it is a representation
of a vector field as a sum of a divergence-free component and a curl-free component.

Replacing two unknown functions, vx and vy, with a single stream function, ψ, will cut our work
in half. More important still, the stream function allows us to understand the flow at a glance. An
ancillary result of (21) is that

v · ∇ψ = (∇ψ × ẑ) · ∇ψ = 0 .

This means that velocity vectors are everywhere parallel to the contours of the stream function.
These contours are called streamlines, and they show at a glance how the fluid is flowing. Where
streamlines are close together, |∇ψ| is large and the flow is fast. Closed curves around local maxima
(minima) show paths of circular flow, called eddies, flowing clockwise (counter-clockwise).

To complete the system we take the curl of (21) to find the vorticity

ζ = ∇× v = −∇2ψ ẑ = ζ ẑ . (22)

The vorticity is therefore a single scalar function, ζ(x, y, t), whose evolution is determined by the
vorticity equation

∂ζ

∂t
+ (v · ∇)ζ =

Dζ

Dt
= 0 , (23)

from eq. (19). Thus the function ζ(x, y, t) is carried around with the fluid.

3.1 Steady two-dimensional flows

For a flow to be equilibrium, or steady, its vorticity must remain unchanging ∂ζ/∂t = 0. Using this
in (23) gives

(v · ∇)ζ = (∇ψ × ẑ) · ∇ζ =
∂ζ

∂x

∂ψ

∂y
− ∂ζ

∂y

∂ψ

∂x
= 0 . (24)

In order to satisfy this equation we seek a function ψ(x, y) whose Laplacian has the same functional
form that it does:

∇2ψ = F (ψ) , (25)

where F (u) is any function of a single variable. Equation (25) leads to a gradient

∇ζ = −F ′(ψ) ∇ψ ,

which will clearly satisfy eq. (24), no matter what the function F ′(ψ) is. Whether or not you will
be able to solve eq. (25) depends entirely on how you choose the function F (ψ). Particularly simple
choices are F (u) = 0 or F (u) = −λu for some constant λ.
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One particular example of a complicated flow is that generated by the stream function

ψ(x, y) = ln[ cosh(y) − ξ cos(x) ] , (26)

where ξ is a parameter (0 ≤ ξ ≤ 1). Contours of this function, shown in Fig. 1, show an upper
layer of rightward flow and a lower layer of leftward flow sandwiching a chain of clockwise eddies.
It is worth taking time to understand how expression (26) leads to Fig. 1 — there is a very similar
pattern in Hamiltonian mechanics. Where are the centers of the eddies? Where are the stagnation
points between them? A truly remarkable feature of expression (26) is that taking derivatives gives

∇2ψ =
1− ξ2

[cosh(y)− ξ cos(x)]2
= − (1− ξ2)e−2ψ .

The flow therefore, satisfies eq. (25) for the choice F (u) = (ξ2 − 1)e−2u, so it is a steady flow.
Apparently the eddies will remain in place, between opposing layers of horizontal flow.

Figure 1. Streamlines for the flow given by eq. (26), with ξ = 0.25.

3.2 Steady flow over an object

Let us now specialize one final time to consider the flow of a fluid, such as air, around a solid object
like a car or an airfoil. This is an equivalent problem to the flow around that object as it moves
through still air, but viewed from the reference frame of the object. If the motion is subsonic we
may use incompressible equations; if it is moving perpendicular to its own long axis we may consider
that flow to be two-dimensional. We assume the flow far from the object is uniform: v = V0 (see
Fig. 2) which is consistent with a co-moving view of the object itself moving at velocity −V0.

Uniform flow means that ∇× v = ζẑ = 0 far upstream. In two dimensional flow the vorticity,
ζ = 0, will be preserved as it it brought near the object. This means that the entire flow is described
by a harmonic streamfunction

∇2ψ = − ζ = 0 . (27)

This is a special case of (25) for F (u) = 0, so the flow will be steady (an equilibrium).
Equation (27) is Laplace’s equation, whose solutions should be well known to you. The surface

of the object itself is a closed curve C, and eq. (27) applies everywhere outside it. Placing the origin
inside C, the solution to Laplace’s equation can be expressed in cylindrical coordinates

ψ(r, φ) = V0r sin(φ− α) + A0 ln(r) + B0 +
∞∑

m=1

r−m [Am cos(mφ) +Bm sin(mφ) ] , (28)
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Figure 2. Steady flow over an object (grey) surrounded by a closed curve C (dark line). Curves show the streamlines
of the flow, which are contours of ψ(r, φ). Upstream (to the left) the flow is uniform at an angle α. (left) The generic
case where upstream flow direction is shown by an arrow. (right) Three different cases of horizontal flow (α = 0)
across an airfoil (grey) at different orientations.

where the constants Am and Bm are fixed by the boundary conditions. There is no flow inside the
object so none of the divergences from ln(r) or r−m will appear in our solution. At large distances,
r →∞, the solution will be dominated by the first term in (28)

ψ ' V0y cos(α) − V0x sin(α) ,

from which ∇ψ× ẑ = V0(x̂ cosα+ ŷ sinα). This is the uniform upstream flow, directed at an angle
α to the x axis.

The remainder of the terms in (28) describe the way the fluid flows around the object. The
flow must be everywhere tangent to C. Since the flow is everywhere tangent to contours of ψ(x, y),
the curve C must be a contour — we can take it to be the ψ = 0 contour. In other words Laplace’s
equation, (27), is subject to the Dirichlet boundary condition

ψ = 0 , x ∈ C . (29)

This condition is used to determine the coefficients, Am and Bm in eq. (28).
A particularly simple object is a cylinder of radius a. Satisfying (29) on the curve, r = a, leads

to the solution

ψ(r, φ) = V0

[
r − a2

r

]
sin(φ− α) + A0 ln(r/a) , (30)

whose streamlines are shown in Fig. 3. The first term on the left (see left of Fig. 3) may be
familiar from electrostatics: it is the electrostatic potential when a conducting cylinder is placed
in a uniform electric field. In the second term, the constant B0 was set to B0 = −A0 ln a, but one
constant, A0, remains free. It is easy to verify that ψ(a, φ) = 0 regardless of what value A0 has.
Moreover, far from the cylinder, r À a, the flow field becomes

v ' V0(x̂ cosα+ ŷ sinα) − A0

r
φ̂ , (31)
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Figure 3. Stream lines of horizontal flow, α = 0, around a cylinder. Each panel shows contours of ψ(r, φ) from eq.
(30), for different values of A0 = −Γ/2π. From left to right they have Γ = 0, Γ = 7V0a, and Γ = 14V0a. In each case
there are stagnation points, labeled S or S′ where v = 0.

which matches the asymptotic flow regardless of A0.
So what is the physical meaning of A0 in the flow described by (28) or (30)? The circulation

around a closed path, P, is defined as

Γ ≡
∮

P
v · dl =

∮

P
∇ψ · (ẑ× dl) . (32)

If Γ > 0 there is a counter-clockwise flow around the path P. According to Kelvin’s theorem Γ is
conserved as the path P is advected with the fluid.

Since ∇2ψ = 0 everywhere outside the object, it is possible to show that every possible path
around it will have the same circulation. Performing the integral for (28) gives Γ = −2πA0 for
any path enclosing the object once. This integral is particularly easy to perform at very large radii
where expression (31) obtains. The flows in the center and right of Fig. 3 have Γ > 0, meaning
that there is a counter-clockwise circulation. This is due to the faster flow along the bottom of the
cylinder, where the contours are closer.

So while the flow has no vorticity, ζ = −∇2ψ = 0, it is not irrotational: it has a circulation
unless A0 = 0. The different values of A0 describe flow around the object with different circulation.
Each is a valid flow around our object from uniform upstream flow.

3.3 Lift: the Magnus force

One of the consequences of flow with circulation is a force on the object at right angles to the flow.
From the version of the momentum equation, eq. (16), for steady flow (∂v/∂t = 0) we can readily
show

v · ∇
(

1
2 |v|2 +

p

ρ0
+ gz

)
= 0 . (33)

This is Bernoulli’s principle for incompressible flow, stating that the expression in parentheses will
be constant along each streamline. Since all streamlines originate far upstream, where the flow is
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uniform, the value will be set there. Ignoring gravity for the moment1 this gives the result that

p(x, y) = p0 + 1
2ρ0V

2
0 − 1

2ρ0|v|2 (34)

where p0 is the ambient pressure far upstream. Where the flow is fast the pressure will be low. The
low pressure can be viewed as the cause of the fast flow rather than its effect: the fluid sped up
as it fell down the pressure gradient. Similarly the pressure will be highest at a stagnation point,
v = 0; the high pressure was responsible for stopping the fluid.

The pressure distributed over the object’s surface, C, will exert a force on it. Since we are
working in two dimensions, this will actually be a force per unit length; the total force is found by
multiplying by the object’s length in the z direction. We begin by calculating the force per unit
length exerted on the surface C

F =
∮

C
n̂ p(x, y) dl , (35)

where n̂ is the normal directed outward from the body; the normal on which the pressure is acting
is −n̂, since the fluid is outside the curve C. The first two terms in eq. (34) will not contribute to
this integral since they are uniform. This leaves the net force

F = − 1
2ρ0

∮

C
n̂ |v|2 dl , (36)

depending only on the speed of the fluid at the object’s surface.
In order to use expression (36) we would need to know the complete solution, ψ(x, y), at least

in the neighborhood of the object. Let us use the case of the cylinder as an illustration, since (30)
gives the complete solution. Taking the derivative and then evaluating at r = a we find

v(a, φ) = − 2V0 sin(φ− α)φ̂ − A0

a
φ̂ . (37)

Since the flow must be tangent to the surface, there is no radial component. It is also noteworthy
that for cases with |A0| < 2V0a (i.e. |Γ| < 4πV0a) there are two stagnation points on the surface;
as there are in the center and left panels of Fig. 3. Using expression (37) in the force, eq. (36) gives

F = −1
2ρ0

∫ 2π

0
r̂ [ 2V0 sin(φ− α) +A0/a ]2 a dφ

= −1
2ρ0

∫ 2π

0
[ cosφ x̂ + sinφ ŷ ] 4V0A0 sin(φ− α) dφ

= −2πρ0V0A0 [ cosα ŷ − sinα x̂ ] , (38)

since terms proportional to V 2
0 and A2

0 both integrate to zero. We can use the relation A0 = −Γ/2π
to write this in a simple physical form

F = ρ0ΓV0 × ẑ , (39)

known as the Kutta-Joukoswski formula.
1It is easy to show that the integral of n̂ρ0gz around the surface of the object yields the buoyancy force. Integration

by parts converts the path integral to an integral of ρ0gẑ over the area inside C.
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This is the force on the surface of the cylinder due to the pressure distributed about it. For the
central and right panels in Fig. 3, where Γ > 0 and V0 = V0x̂, there is a downward force (∝ −ŷ) on
the cylinder. This is due to the higher pressure along the top where the stagnation points (labeled
S and S′) are. The contours are closest together along the bottom, indicating that the flow is
fastest and the pressure is lowest.

We derived expression (39), known as the Magnus force, for the special case of a cylinder, eq.
(30). It turns out to apply to the general solution, eq. (28), about an object of arbitrary shape. It
is rather difficult to show this using (36) when C is very complicated, such as an airfoil (see Fig.
2). It can, however, be demonstrated using the momentum of the upstream and downstream flow.

Let us consider the special case of purely horizontal flow (α = 0) incident on an arbitrary object,
C. The flow far from the object has the same form, eq. (31),

v ' V0 x̂ +
A0y

r2
x̂ − A0x

r2
ŷ , (40)

independent of the object’s shape. A column of fluid ∆x wide, extending over all y, will have a
vertical momentum2

Py = ∆x
∞∫

−∞
ρ0 vy dy = −∆xρ0A0x

∞∫

−∞

dy

x2 + y2
= − π∆xρ0A0

x

|x| . (41)

Remarkably, every column upstream of the object, x/|x| = −1, has exactly the same vertical
momentum. Every column downstream, x/|x| = +1 has the same momentum, but it is different
from the upstream momentum by

∆Py = − 2π∆xρ0A0 = ρ0Γ∆x . (42)

Since these columns are moving horizontally at speed V0, their momenta are being changed at a
rate

dPy
dt

= ρ0ΓV0 . (43)

This change in momentum requires a vertical force on the fluid —- a force from the object. Accord-
ing to Newton’s third law there must be an equal and opposite force, Fy = −ρΓV0, on the object
from the fluid. This is the Magnus force as given by (39), but here for the case V0 = V0x̂.

The first fact to notice about the Magnus force, eq. (39), is that it is perpendicular to the
upstream flow direction, V0. It is not a drag force (i.e. “air resistance”) which would be directed
parallel to V0. One example of the Magnus force is the lift force which keeps airplanes aloft.
Horizontal flow over the wing creates an upward force. Another is the force on a spinning baseball
which can make it curve unexpectedly on its way to home plate: it makes a curve ball curve.

The general derivation above gives some physical insight into the origin of the force. There is
a force on the object because it is deflecting the airflow. More simply put the object is pushing
against the fluid and the fluid is pushing back. It is pushing at right angles to the flow, not against
it, and therefore it deflects the flow but does not slow it down. The amount of deflection depends
on the circulation, Γ, about the object, and so therefore does the Magnus force. In the upper two
panels on the right of Fig. 2, Γ < 0, so there an upward lift force. The air comes in from the left
moving slightly upward, and leaves to the right going slightly downward. The lift on the wing was
exerted in the course of imparting this downward momentum to the air.

2This is actually a momentum per unit length in z. Its time-rate-of-change will give the force per unit length, F.
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3.4 Whither the drag force?

The absence of a drag force from steady flow without vorticity is known as d’Alembert’s paradox.
So what happened to the drag force? You might suspect it was lost when we neglected the fluid’s
viscosity, and you would not be entirely wrong. But the viscosity of air is extremely small, and
it’s hard to believe such a small effect can explain why big cars use so much gasoline. The main
ingredient needed to recover a drag force is not viscosity, but rather some kind of wake in the
flow field: a column of fluid behind the body whose streamlines do not originate upstream — in
extreme cases the fluid is stationary in the frame of object. Since its streamlines do not originate
upstream, the pressure inside the wake cannot be found from Bernoulli’s principle; it is typically
p ∼ p0 throughout when |v| = 0. The pressure at a leading stagnation point will be greater than
this, p ∼ p0 + 1

2ρ0V
2
0 , giving a net backward force on the object. This is the drag force.

For a flow to include a wake its stream function, ψ, should take on a roughly constant value
within a range of angles around φ ∼ α. This is not the case for our general solution to Laplace’s
equation (28), since ψ ∼ V0r sin(φ − α). We might have noted earlier that in the general solution
(28), the flow is the same far from the object, v → V0, whether you look upstream, downstream
or to the side — there is no wake disturbing any part of the flow downstream. Solution (28) has
no wake so it therefore has no drag. This is the origin of d’Alembert’s paradox.

A more practical consequence of d’Alemberts paradox is that there will be no drag if the object
moves though the fluid without leaving a disturbance behind it (i.e. a wake). The smaller the
disturbance you create the smaller will be the drag force you face. This means that streamlining
an object, to minimize its drag, is first and foremost about the fluid flow behind the object — its
wake. Naive people, feeling the air pressure on their front, will focus streamlining efforts there:
“make the front pointier so there is less drag.” Aerodynamic engineers know, however, that the
secret to streamlining is in the back. Looking at a commercial airliner you will notice that the back
end is far pointier than the front.

We may use our experience with harmonic functions to say more generally that any function
which is uniform over some region (the wake) but not elsewhere (upstream) cannot be a solution of
Laplace’s equation. Thus we see that in a flow with a wake ∇2ψ = −ζ cannot be zero everywhere:
there must be vorticity somewhere in the flow. In particular, there must be layers of vorticity
separating the stationary wake from the rest of the downstream flow. But according to eq. (23)
this vorticity cannot lie on streamlines from upstream. Where then did it come from? Typically
these vortex layers connect to a piece of the body itself. A very thin layer, called a boundary layer
breaks free from the object’s surface and forms the outside of the wake. We ruled out such behavior
when we took ∇2ψ = 0 everywhere in the flow. A thorough understanding of this boundary layer
does require the inclusion of viscosity, so it does play a role. But what receives the momentum
when the air exerts a force on the body? The wake does.

3.5 Lift on an airfoil

The foregoing section showed the Kutta-Joukowski formula, eq. (39) for the Magnus force. This
provides a ready answer to the question “What makes an airplane fly?”. The answer it gives,
“Circulation on its wings”, is correct, but simply raises one more question: “Why do the wings
have circulation?”. This question is even more troubling than the first, since the circulation was
a free parameter in our analysis. At least in solution (30) the value of A0 can be anything and it
will still satisfy the equation, (27), and the boundary condition. If this were the case for an airfoil,
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then the lift could be anything — even zero.
It turns out there is a way to find a unique value of circulation for an airfoil in a given upstream

flow. Doing so exactly would require solving Laplace’s equation with boundary conditions, ψ = 0,
along a very complicated curve, C, such as one on the right of Fig. 2. This is possible using
very sophisticated analysis techniques (that’s how the figures were made). The basic idea, however,
requires only a little knowledge about Laplace’s equation and a single feature common to all airfoils.

The problem facing us is to find a function ψ(r, φ) satisfying Laplace’s equation, eq. (27), and
homogeneous boundary conditions, ψ = 0 on the curve C. The general solution, (28) will do this
for the appropriate choice of coefficients Am and Bm, m ≥ 1. Let us assume we have found two
such solutions: ψα and ψc. The first is defined have zero circulation (A0 = 0) and approach

ψα(r, φ) → r sin(φ− α) , r →∞ . (44)

This means it has flow speed unity making an angle α. The second solution will have unit circula-
tion, and approach

ψc(r, φ) → − ln(r)
2π

, r →∞ , (45)

so it has no net flow far from the airfoil. Both functions are solutions to Laplace’s equation, so any
superposition

ψ(r, φ) = V0 ψα(r, φ) + Γψc(r, φ) , (46)

will be as well. This particular superposition will be a flow with lift force −ρ0V0Γ directed upward
(i.e. it will be upward provided Γ < 0).

The foregoing simply restates our previous conclusion that the circulation, Γ, is a free parameter
of the solution. For a given upstream flow speed, V0, and angle α, we may add any multiple of ψc
to get any circulation we want, and therefore any lift we want.

The analysis is not so simple when the curve C has a discontinuity in its tangent — a sharp
corner. If it has a sharp corner, as all good airfoils do, then general solutions to Laplace’s equation
will have a singularity there. To be sure ψ will vanish over the entire curve, but its derivative,
|∇ψ|, can diverge approaching the sharp corner, as it does in Fig. 4. This same kind of singularity
occurs in electrostatic fields near a pointed conductor. Large electric field there can be the source
of field emission. In this case the divergence means that |v| → ∞ around the sharp corner — a
troubling property indeed.

Figure 4. Two different airflows with the same upstream velocity but different circulations, Γ. (left) A flow which is
singular at the trailing edge. A higher density of contours are plotted near ψ = 0 in order to better visualize the flow
in the vicinity of the airfoil’s surface. Evidence that ∇ψ → ∞ at the trailing edge is found in the very high density
of contours there. (right) The flow, ψreg which is regular at the trailing edge. Note that the second stagnation point,
S′, present in the singular flow is absent from the regular flow.
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In general there will be singularities of this same form in both solutions, ψα and ψc. What is
remarkable is that it is possible to make a linear combination of the two solutions,

ψreg(r, φ) = ψα(r, φ) − `αψc(r, φ) , (47)

in which the two singularities cancel one another. There is a unique coefficient, `α (whose units
happen to be length) for which this cancelation occurs, and the resulting function, ψreg(r, φ), has
a bounded gradient, even at the sharp corner (see right panel of Fig. 4).

Every linear combination of the form (46) satisfies the equations of incompressible hydrody-
namics — even the singular ones. Both plots in Fig. 4 are valid solutions of Laplace’s equation,
satisfying all the boundary conditions. The particular combination, ψreg(r, φ), however, is the only
one whose velocity is finite everywhere (this is the right panel). Joukowski proposed that this
non-singular flow would be the only one actually observed. It seems like a reasonable hypothesis
since arbitrarily large velocity, in Bernoulli’s principle eq. (34), would demand negative gas pressure
— not a likely event. On the other hand, no real object has corners as sharp as a mathematical
discontinuity. Trailing edges on real airfoils curve smoothly (they are made of metal, after all), but
over radii much smaller than the rest of the wing. Joukowsi’s hypothesis, even in this case, is that
the actual flow will be the one for which the velocity is relatively small at the corner.

There is a unique streamfunction which matches our upstream velocity condition and satisfies
Joukowski’s hypothesis:

ψ(r, φ) = V0 ψreg = V0 ψα(r, φ) − V0`α ψc(r, φ) . (48)

Comparing this to expression (46) shows that the flow has circulation, Γ = −V0`α. In other words,
under Joukowski’s hypothesis the circulation is not actually a free parameter, it is fixed by the
shape of the airfoil and the upstream flow. Using this in the Kutta-Joukowski formula gives the
upward lift force (per unit length) on the airfoil

Flift = ρ0`αV
2
0 .

The coefficient `α comes from actually solving Laplace’s equation over the airfoil, which we have
vowed not to do. It seems likely that its value will depend on the angle of the upstream flow, i.e.
on α. It is also likely that it might be negative, although that would be undesirable if you plan to
keep your plane in the air.

To gain one more bit of insight into the lift force, consider further decomposing the function
ψα as

ψα(r, φ) = cosαψx(r, φ) + sinαψy(r, φ) . (49)

ψx and ψy are just version of ψα for α = 0 and π/2 respectively. Following the logic above we find
two coefficients, `x and `y, such that the linear combinations

ψx(r, φ) − `xψc(r, φ) , ψy(r, φ) − `yψc(r, φ) , (50)

are each regular at the trailing edge. We may then superpose these two regular functions to give a
regular function with an arbitrary angle to its upstream flow:

ψ(r, φ) = V0ψα(r, φ) − V0 [ cosα `x + sinα `y ]ψc(r, φ) . (51)
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The coefficient of ψc may once again be equated to the circulation. Defining the combinations

`0 ≡
√
`2x + `2y , α0 ≡ − tan−1(`x/`y) , (52)

allows the lift force to be written

Flift = ρ0`0V
2
0 sin(α− α0) . (53)

The parameters α0 and `0 depend on the shape of the specific airfoil, and require the solution of
Laplace’s equation.

Expression (53) reveals several universal facts about the lift force on an airfoil, even without
knowing the precise values of the parameters. There is a particular angle, α0, from which flow will
produce no lift at all (see the lower right panel of Fig. 2). As long as the flow is incident from
below this direction, α > α0, there will be an upward lift force (see the other two panels). For small
values, the lift will be proportional to this difference in angles. The other parameter `0, depends on
the shape and size of the airfoil. It has dimensions of length, so it will be proportional to a linear
dimension of the airfoil’s cross section.

An actual wing will extend a finite length L in the third dimension (z). The total force on this
wing is found by multiplying the lift-per-length, from eq. (53) by L

Lift = ρ0`0LV
2
0 sin(α− α0) . (54)

The product `0L is proportional to the total area of the wing. A larger wing creates more lift.
Flying faster also creates more lift. Except for the dependence on angle we might have predicted
exactly this relationship from dimensional analysis alone. Indeed, the drag force on the wing, which
we cannot find from our vortcity-free treatment, will be proportional to exactly the same factor. It
is a force, so it must involve exactly the same combination of factors.
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