Mpole Reterence

Montana State University

May 25, 2006

Matthew Sos & Dana Longcope

Version 2.4
This software is distributed freely with no implied warranty

Contents

1 Introduction
1.1 Finding and Visualizing Poles
1.2 Finding and Visualizing Magnetic Null Points
1.3 Visualizing Separatrix Surfaces
1.4 Finding and Visualizing Separators
1.5 Connectivity and the Domain Matrix
1.6 Tracing Field Lines
1.7 The Viewing Transformation
1.8 Storage and Retrieval of Results
1.9 A Sample Session

2 Data Structures
2.1 Poles
22 Nulls.

2.3 Separators
24 Field Lines
2.5 Viewing Transformation
2.6 Domain and Connectivity Matrices
2.7 Data Storage

3 Routines by Function
3.1 Input and Output Routines
3.2 Calculational Routines Lo
3.3 Graphics Routines oL oL
3.4 Analysis Routines. L Lo

3.5 Viewing Transforms

4 Alphabetical List of Routines

© © 00 N B~ e W NNy = -

11
11
12
12
13
13
13
14

15
15
18
22
30
33

36

CONTENTS

ii

4.1 Top level Routines . .

4.2 Lower Level Routines

Chapter 1

Introduction

The Mpole package is a collection of IDL routines to implement the Magnetic
Charge Topology (MCT) models and the Minimum Current Corona (MCC)
model.>* The package includes numerical algorithms to find and manipulate
key elements of the topology of such models, such as magnetic null points,
separatrix surfaces, and separator field lines. There are also routines for data
visualization and output of results. The details of these models are presented in
the references. In particular, the examples presented in this manual are those
found in reference [4].

1.1 Finding and Visualizing Poles

In magnetic charge topology models the coronal field is determined from a set
of point charges. The charges may be a purely theoretical construction, or an
approximation of an observed photospheric field. The complete set of charge
positions and strengths (fluxes) are contained in a poles data structure, along
with other data pertaining to the set as a whole. The prefered method of
creating the structure is to read it from a file. There is a program rd_pns which
reads ASCII files with a specific format, column formatted text with special tags
identifying each section. It is tradition to give such files the extension .pns, for
poles-nulls-separators, since the file format permits the specification of all the
basic topological features of MCT. Because it is an ASCII file it may be created
simply with a text editor, although it is usually necessary to do this only for the
poles. An example data file containing only poles appears in example 1.1.0.1.
This example is the one analyzed in published articles on the MCC.*# (Lines
beginning with % are skipped; they are used here as comments for our own
information.) The command

rd_pns, ’example.pns’, pls

1.2. FINDING AND VISUALIZING MAGNETIC NULL POINTS 2

Example 1.1.0.1 A simple data file containing six magnetic sources.
BEGIN POLES

% lab X y z Phi
P1 0.75 0.0 0.0 1.0
P2 0.3 0.9 0.0 0.5
P3 -0.75 0.6 0.0 0.25
N4 -0.9 0.0 0.0 -0.8
N5 0.75 -0.45 0.0 -0.25
N6 -1.5 0.75 0.0 -0.7

END POLES

will read the sources from a file example.pns into the variable pls, replacing
the variable’s existing contents. As with any IDL variable, its structure can be
examined using

help, pls, /struct

Once the structure of poles has been defined, the pole locations may be plotted
using

show_poles, pls

1.2 Finding and Visualizing Magnetic Null
Points
Magnetic nulls, (i.e. points of zero magnetic field) may be found for a given

charge configuration. The procedure all_nulls is intended to locate all of the
null points for a given poles structure.

nls = all_nulls(pls)

will locate the nulls associated with the poles structure pls, placing them in
the structure-array nls. IDL will prind the following cryptic statements on the
screen

Sources:
3 positive, 3 negative

Nulls:
2 positive (B), 2 negative (A)
4 prone

2d Poincare index:
CHECKS 0K

3d Poincare index:
CHECKS OK

1.3. VISUALIZING SEPARATRIX SURFACES

Their meaning will be explained below.

The structure containing the nulls can be examined using
help, nls, /struct
while
show_nulls, nls

will draw their locations on the current plot.

The number of null points in a field, even a simple one, is difficult to know in
advance. One theorem,* which goes a type of Poincaré index theorem, states
that that N charges must have at least N — 2 nulls (at least N — 1 if the total
charge of the set is not zero). There are still more elaborate theorems vailable,
a summary of which appear in [1]. The program index_check runs through a
set of these and prints the diostics to the screen. It is invoked by typing

index_check, pls, nls

This program is invoked automatically by all_nulls, which produces the print-
out described above.

The index_check program counts the number of sources of each sign and the
number of nulls of each type. These counts are displayed, and compared to
the predictions of two different index theorems. If either of the index theo-
rem gives an unxpected result (i.e. is not OK) index_check will make its best
guess about which nulls are missing. It is often the case that some nulls elude
all_nulls in spite of its ambitious name. The program xadd_nulls permits
you to add missing nulls, provided you can point to an approximate location
with the cursor.

Armed with a set of poles and of nulls it is possible to graph the footprint of
the field’s skeleton* using the command

show_fp, pls, nls, xr=[-2,2], yr=[-2,2]

Note how the keywords xr and yr force a less claustrophic frame for the plot.

1.3 Visualizing Separatrix Surfaces

The fan surfaces of the nulls form the skeleton of the field, dividing it into its
domains. To plot the separatrix surface from one or more particular null atop
an exisiting plot (say of the footprint) type

show_sepx, pls, nls[0]
show_sepx, pls, nls[1]

1.4. FINDING AND VISUALIZING SEPARATORS

Each command draws sample field lines from the separatrix surfaces that par-
ticular null.

To see a perspective view of this piece of the field’s skeleton you must use 3d
versions of some of the programs, and use /threed options of others. Typing
the commands

show_3dpoles, pls
show_3dnulls, nls
show_sepx, pls, nls[0], /threed

accomplishes this.

1.4 Finding and Visualizing Separators

The separator line itself can be found using the function all_seprs(), which
returns all separators associated with a given configuration of poles and nulls.
(Once again, this program is quite fallible, and many separators will elude its
search.)

spr = all_seprs(pls, nls)

Though finding separators is computationally expensive, plotting them is not.
The command

show_sepr, pls, nls, spr

will draw the separator lines in spr over the current plot. (If you don’t have
an exisiting plot, you may create one by typing show_fp, pls, nls.)

The properties of the separators,?® such as enclosed flux, length, and fiducial
current I*, may be computed using the command

si = sepr_info(pls, nls, spr, /str)

This creates a structure called si whose fields contain the information.

1.5 Connectivity and the Domain Matrix
The connectivity of the field can be represented by the domain matix or adja-
cency matrix D;;. This is represented by an (N + 1) x (N + 1) array dm[i, jI.

The fastest way to calculate this is the program domain_matrix

dm = domain_matrix(pls, nls)

1.5. CONNECTIVITY AND THE DOMAIN MATRIX

In this matrix row and column with index 0 represents co (distant sources) so
the connection between poles 0 and 3, charges P1 and N4, is to be found in
dm[1,4]. This is 1 in the example, indicating that the sources are connected.
The matrix may be represented graphically over an exisiting plot of the poles

by typing
show_dm, pls, dm

A concise summary table can be printed on the screen by typing
dm_print, pls, dm

This results in the tabular array printed to the screen

N4 N5 N6
P1 1 1 1
P2 1 0 1
P3 1 0 1

showing that N4 and N6 each connect to all positive sources, while N5 connects
only to P1.

A slower and less accurate, but more straight-forward alternative is to use
Monte-Carlo integration: begin random field lines from each source and see
where they end up. This is done by the typing

cm = connectivity(pls)
The connecivity matrix, cm, contains floating-point values which are the approx-
imation of the flux in each domain. The connectivity can be listed in tabular
form by invoking the command

cm_list, cm, pls

This print something approximating the following summary to the screen

1.5. CONNECTIVITY AND THE DOMAIN MATRIX

Largest connection by source

flux frac. deg. col. error
P1 --> N4 0.554 56.9% 3 -2.7324%
P2 -—> N6 0.389 75.7% 2 2.9173%
P3 -—> N4 0.152 61.5% 2 -1.2236%
N4 --> P1 0.554 66.7% 3 3.7989Y%
N5 --> P1 0.260 100.0% 1 4.12447,
N6 -—> P2 0.389 60.5% 3 -8.0713%

Largest connections

flux frac. cummulative
P1 -—> N4 0.554 31.9176% 31.9176Y%
P2 -—> N6 0.389 22.4575), 54.3751Y
P1 --> N5 0.260 15.0104% 69.3855%
P1 -—> N6 0.159 9.1597% 78.5452}
P3 -—> N4 0.152 8.7502% 87.29547
P2 -—> N4 0.125 7.2153% 94.5107%
P3 --> N6 0.095 5.4893% 100.0000%

The actual numbers will always be slightly different since the connectivity uses
a random number generator in its Monte Carlo calculation of the connectivity
matrix. The top segment is a list of all sources along with the source to which
it shares the plurarility of its flux. The bottom provides a list of connections in
order of decreasing size. If there are very many connection only the top 25 are
shown (or some other number set by keyword).

If you have a structure, spr, containing all of the separators it is possible to use
it to find the domain matrix:

dm = domain_matrix(pls, nls, spr)

This is the fastest method possible, however, it will omit domains which are
“leaves” in the domain graph. Calling it with the \leaf keyword set will include
these, but at the cost of slightly longer run time. In general this longer time
is still considerably less than running domain_matrix without the separator, so
it is a nice compromise. Recall, however, that if some separators are missing
from spr then this version cannot hope to provide you with a complete list of
domains.

The domain graph is plotted, in schematic form, by the function
dm_schematic, pls, dm

The function null_graph will plot the null graph, showing the nulls and sep-

arators. A side-by-side plot of both the domain graph and null graph gives a

concise summary of the field’s connectivity:

sum_graph, pls, nls, spr

1.6. TRACING FIELD LINES

In addition to theorems concerning the numbers of null points there are also
theorems relating the numbers of separators and numbers of domains.! Calling
index_check with the separator structure as the third argument will print the
old assessment of the null count and then add the text

Euler Charcateristic:
D = 7 domains
1 unbroken fans
== 0 coronal domains

It has used the numbers and types of sources, nulls and separators to determine
that there should be D = 7 different domains present. The result of sum_graph
just produced seems to indicate that there are only six. The problem here is
the absence of “leaf” domains in the plot: they are always counted in the Euler
characteristic. Leaf domains can be included in the plot in two ways. Either by
using the keyword \leaf

sum_graph, pls, nls, spr, /leaf

or by including the domain matrix, dm, as a fourth argument. This second
method will only work, however, if the domain matrix has been calculated in a
way which will include leaf domains.

1.6 Tracing Field Lines

Individual magnetic field lines may be found from any charge configuration,
given an initial starting point using f1_from_point. If you have less specific
desires you can choose to draw a random selection of field lines from a sepcified
domain, say the one connecting pole 0 P1 to pole 3 N4 by typing

show_domain, pls, 0, 3
On an existing 3d plot you can draw a sample of all field lines by typing
show_random_3dlines, pls
To trace a single field line from an initial point, say (x,y,z) = (0,0,0.1), type
f1 = f1_from_point(pls, [0,0,0.1])

will calculate the field line originating from the point in the charge configuration
pls.

As field lines are simply arrays of vertices, they can be displayed using the IDL
direct graphics routines. For example, the command

PLOTS, £1(0,*), f1(1,*), f1(2,*%), /t3d

will draw the field line £1 on an exisiting 3d plot.

1.7. THE VIEWING TRANSFORMATION

1.7 The Viewing Transformation

In Magnetic Charge Topology models, the photosphere is represented as the
plane at z = 0. Observed photospehric fields must be modeled in the tangent
plane approximation. The results may be mapped onto the sky using a view-
ing transformation contained in a structure view. This structure provides the
transformation which takes points in the tangent plane, (z,y) are Megameters
(North, West) from the point of tangency, to the plane of the sky, (z,y) are
arc-seconds (North, West) of disk center. The command

view = view_xform(20.0, 30.0, /degrees)

establishes a transformation which puts the origin of pls at 20°N and 30°W on
the solar disk. To view the sources as they appear in the sky type

show_poles, pls, view=view
To see the same region one hour later type
show_poles, pls, view=solar_rotate_view(view, 3600.0)

A common situation is to have a set of poles whose locations were determined
from a magnetogram. When located from a magnetogram the poles have (x,y)
coordinates in the plane of the sky, and an implicit z-ccordinate (along the line-
of-sight) which would place them on the solar surface. Provided (z,y) are in
arcseconds from disk center the command

view = disk2tan_plane(pls)

calculates the appropriate viewing transformation and changes the values in the
structure pls so that its coordinates are now in the tangent plane. In order to
view the poles as they appeared on the sky it will hereafter be necessary to type

show_poles, pls, view=view

otherwise, they will be shown as viewed from above the tangent plane. Mpole
provides no reverse transformation since none of the MCT calculations should
ever be done in plane-of-the-sky coordinates. All two-dimensional plotting rou-
tines will accept the view keyword.

When poles are saved for future use (see next section) it is important to save
the viewing transformation if you ever want to plot things as they would appear
in the sky. The sample file ar930605.pns contains the viewing transformation
used when the magnetogram-derived poles were mapped onto the tangent plane.
Reading the poles with the command

rd_pns, ’ar930605.pns’, pls, view=view

1.8. STORAGE AND RETRIEVAL OF RESULTS

will fill the structure pls with the 20 sources in the file, and will read the veiwing
transformation into the variable view. Viewing the structure

** Structure <1aa628>, 8 tags, length=88, data length=84, refs=1:

MAT FLOAT Array[3, 3]

DISP FLOAT Array[3]

LAT FLOAT -15.7515

CMD FLOAT 18.7504

P FLOAT 0.00000

B FLOAT -0.0943472

RAD FLOAT 954.693

DATE STRING ?1993-06-05T13:59:46:000Z’

we see that the point of tangency is at 15°75S and 18°75W. The
string view.date contains the time of observation (in standardized
yyyy-mm-ddThh:mm: ss.f££Z format). When such a string exists the view may
be advanced in time by specifying the desired date and time, in the same format.
For example the command

nv = solar_rotate_view(view, to=’1993-06-07T14:00:00.0000Z’)

creates a new viewing transformation whose point of tangency is at 15°755 and
45°47TW.

1.8 Storage and Retrieval of Results

Poles, nulls, and separators may be saved to disk and retrieved later for further
analysis.

write_pns, ’example2.pns’, pls, nls, spr, view=view

writes all the information into an expanded example.puns file. This may be read
back in by the command

rd_pns, ’example2.pns’, pls, nls, spr, view=view

1.9 A Sample Session

There is nothing approaching a “typical” operating procedure for the Mpole
programs since these versatile programs can be used in a limitless variety of
different calculations. In the interest of demonstration, however, we present here
a sequence of commands to read in a set of poles and analyze the connectivity
of their field. This sequence combines, for the most part, commands which have
been explained above.

1.9. A SAMPLE SESSION

10

The first steps read in the poles from a file, find the nulls, plot the footprint
and try to add any missing nulls manually (although in this simple case none

are missing)

rd_pns, ’example.pns’, pls

nls = all_nulls(pls)

show_fp, pls, nls, xr=[-2,2], yr=[-2,2]
xadd_nulls, pls, nls

show_fp, pls, nls, xr=[-2,2], yr=[-2,2]

The next set of commands find the separators, plot these above the exisiting
footprint, then display the whole thing three-dimensionally, including field lines
from domains P3-N4 and P2-NG6.

spr = all_seprs(pls, nls)

show_sepr, pls, nls, spr

show_3dpoles, pls, xr=[-2,2], yr=[-2,2]
show_3dnulls, nls

show_sepr, pls, nls, spr, /threed
show_domain, pls, 3, 2, /threed
show_domain, pls, 5, 1, /threed

The final sequence finds the connectivity of the field and displays it in three

different ways

dm = domain_matrix(pls, nls)

dm_print, pls, dm

polka_map, pls, xr=[-2,2], yr=[-2,2], max=0.2
show_dm, pls, dm

window, 1

sum_graph, pls, nls, spr, dm

Chapter 2

Data Structures

Mpole routines operate on a variety of data structures. These structures have
counterparts in magnetic charge topology, but most also include components for
convenient numerical analysis. The following sections describe the major Mpole
data structures.

2.1 Poles

A fundamental feature of Mpole models is some configuration of magnetic
sources. The poles structure represents such configurations. Variables of this
type contain a set of magnetic charges, their locations and strengths, and char-
acteristics of the configuration as a whole. A poles variable pls has the following
form:

pls.lab An array of strings labeling each source in the configuration.
pls.x An array of floats giving the x coordinate of each source.
pls.y An array of floats giving the y coordinate of each source.
pls.z An array of floats giving the z coordinate of each source.
pls.q An array of floats giving the charge of each source.

pls.phi An array of floats giving the flux of each source.

pls.bmax The characterisitic maximum field strength.

pls.drmax The characterisitic small distance.

pls.coc An array of floats giving the coordinates of the center of charge.

pls.rmax The characteristic maximum distance from pls.coc. Beyond
this distance the field is approximated by a 2-term mutlipole
expansion.

pls.mpole The monopole term in the multipole expansion.

pls.dpole The dipole term in the multipole expansion.

pls.alpha A place holder for « in linear-force-free fields. (These are not
yet implimented).

2.2. NULLS

12

2.2 Nulls

In contrast with the poles structure, which contains information about an entire
set of charges, the null structure describes only a single null.

A null variable nl has the following form:

nl.x float array(3): the x,y,z coordinares of the null

nl.b float B(x) (should be small, since this is meant to be a null).
nl.lam float array(3) the eigenvalues (sorted) of the matrix M;; =
nl.e0 float array(3) the unit vector of the spine

(3)

nl.el float array(3) one of the fan directions

nl.e2 float array(3) other fan direction

nl.type character, either A’ or "B’

nl.ends int array(2) the indices of charges (referring to the arrays
in pls) at the ends of the spines. -1 for infinity. sorted in
ascending order

nl.label string giving the name of the null

nl.theta0 float the angle begining the circle on the plane, after that
circle increases by 7.

Arrays of nulls are used to represent all the null points for a given charge con-
figuration.

2.3 Separators

A separator is a magnetic field line found at the intersection of two separatrix
surfaces. Rather than storing the entire line, Mpole finds the separator by
following a field lines from initial angles 84 and 6p from the fans of the nulls at
each of its ends. The separator is a strcuture containing this information.

spr.anull int: The index of the A-type (negative) null (the index refers
to the array of null structures).

spr.bnull int: The index of the B-type (positive) null (the index refers
to the array of null structures).

spr.atheta double: 6,4, the angle within the fan of the A-null, defined
relative to null.thetaO

spr.btheta double: 60p, the angle within the fan of the B-null, defined
relative to null.theta0l

spr.poles array of 4 ints giving the indices of the spine charges of the

two nulls.
spr.label char a label for the separator
spr.psi the flux enclosed by the separator
spr.i0 the fiducial current defined by the potential field separator

spr.len the length of the separator field line

2.4. FIELD LINES

13

The user must ensure that a given array of separator-structures does not become
inconsistant with the null points that generated it, since the separators are
defined in terms of a specific set of nulls.

2.4 Field Lines

Magnetic field lines are represented by Mpole as arrays of vertices. When con-
nected piecewise, the resulting line segments approximate the shape of a con-
tinuous curve. The number of vertices, and thus the size of the array, varies
depending on user preferences and the complexity of the line.

Complete field lines take the form of a 3 x n array, where n is the number of
segments defining the line. The location of each vertex is given in Cartesian
coordinates. For example, the straight line connecting the points [z,y,2] =

[0,0,0] and [x,y, 2] = [1,1, 1] would be expressed in Mpole as [(1) (1) (1)]

2.5 Viewing Transformation

The viewing transformation has the following form: The viewing trasnformation
tanes a vector in tangent-plane coordinates x, to plane-of-sky coordinates x5
according to

Xpos = mat - Xy, + disp

or in IDL
xpos = view.mat # xtp + view.disp

The information for this transformation is stored int he structure view

view.mat the 3 x 3 transformation matrix

view.disp the displacement vector.

view.lat solar latitude of the point of tangency (degrees)

view.cmd central merdian distance of the point of tangency (degrees)

view.b the solar b angle (degrees)

view.p the p angle (degrees)

view.rad apparent solar radius (arcseconds)

view.scale the linear scale factor.

view.date a string giving the date in strandard format:
yyyy-mm-ddThh:mm:ss:f££f7

2.6 Domain and Connectivity Matrices

Information about the domains formed by a set of N poles are stored in
(N +1) x (N + 1) matrices. Row/column ¢ stores infomation about the pole

2.7. DATA STORAGE

14

indexed by ¢ — 1 in the poles structure. Row/column 0 stores information about
connections to co. For example, the domain matriz, dm[i,j], returned by
domain_matrix.pro, is 1 if poles i-1 and j-1 are interconnected, and 0 if they
are not. Likewise, dmn[0,i]l=dmn[i,0] indicates whether pole i-1 connects to
00.

2.7 Data Storage

Mpole stores data to disk in simple text files that can be created and modified
by hand. Each file has a number of tagged sections containing the neccessary
fields to build its associated Mpole variable. Data files can contain poles, nulls,
separators, and viewing transformations.

Each section in the data file begins with the text BEGIN followed by the
data type in capital letters. Similarly, the end of a section is marked
by the text END, again followed by the data type in capital letters. Be-
tween these two tages are rows of data, the format of which depends

on the section type. The row format for each section is as follows:
Section Column Column Column Column Column Column
1 2 3 4 5 6
Poles Label x coordi- | y coordi- | z coordi- | magnetic | N/A
nate nate nate flux
Nulls Array in- | x coordi- | y coordi- | z coordi- | Type Label
dex nate nate nate
Separators| Array in- | Index of | Index of | “A” an- | “B” an- | Label
dex “A” null “B” null | gle gle

Mpole routines will ignore any line in a data file that begins with %, which is
useful for inserting comments. Data files created with write_pns will contain
comments at the beginning of each section identifying the contents of each data
column.

Chapter 3

Routines by Function

3.1 Input and Output Routines

cma2csv
given a set of poles and an array containing the connectivity matrix, output
in connectivity matrix as a .csv (comma separated values) file.

Calling Sequence:
cm2csv, pls, cm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

cm connectvity matrix — int matrix which is 0 for no connection
and ;0 for connection.

Keyword Parameters:
minflur=minflur the minimum flux to include (poles whose con-
nections total less than this are not included)

file=file the name of an output file [’cm.csv’ |

cm _list
given a set of poles and an array containing the connection matrix (returned
by connectivity) print out a summary of the connections

Calling Sequence:
cm_list, em, [pls |

Keyword Parameters:
ntop=ntop print, the ntop largest connections. [25 |

err=err if set, this is the error matrix from connectivity

3.1. INPUT AND OUTPUT ROUTINES 16

format=format the format for printing the fluxes

dm2tex
given a set of poles and an array containing the domain matrix, produce a
LaTeX table (on the screen) with the tabel.

Calling Sequence:
dm2tex, pls, dm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

dm domain matrix — int matrix which is 0 for no connection and
;0 for connection. its value will be used to determined the
pinted character.

Keyword Parameters:
vstring = vstring a string array w/ N elements where N =
max(dm)+1. vstring(dm(i,j)) will be printed at each location.
default = [07, '1°, 72", ... |

dm_print
given a set of poles and an array containing the domain matrix, print a
table

Calling Sequence:
dm_print, pls, dm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

dm domain matrix — int matrix which is 0 for no connection and
;0 for connection. its value will be used to determined the
pinted character.

Keyword Parameters:
vstring = vstring a string array w/ N elements where N =
max(dm)+1. vstring(dm(i,j)) will be printed at each location.
default = [’0°, '1°, 72", ... |
col_space=cs spacing between column. default is 2 setting to 0
will make the heading labels run together

latex_poles
output a table in LaTeX format summarizing the poles

Calling Sequence:
latex_poles, pls

3.1. INPUT AND OUTPUT ROUTINES 17

Inputs:
pls the structure of poles

Keyword Parameters:
view = view is used to translate poles into heliographic coords

tan_plane if set coordinates are recoreded in Mm
pwr = pwr write fluxes in units of 10" {pwr} Mx

tot if set place a total at the bottom of each side

rd_pns
read in a .pns file containg poles, nulls & separators. return all of these as
the appropriate structures/arrays. a file may contain only poles, or poles &
nulls. and the remaining structures will not be set upon return. old-style
.mp files, containing only poles may be read in. a line @— will separate
multiple entries in a single file. if keyword multi is set then read through
multi-1 of these lines.

Calling Sequence:
rd_pus, filename, pls [, nulls [, sepr |]

Keyword Parameters:
view = view will return the viewing transformation (if present)

dm = dm will return the domain matrix (if present)

multi is set read through multi-1 different entries if there are not
this many entries return multi set to -1.

norefine if set the null positions will not be refined

info if set the separator information will be stored in the sturcture.
this takes additional time.

norelabel if set the nulls will not be relabeled
noends if set the end-points of spines will not be found.

rmazr = rmaz (fix rmax)

write_pns
output a file containing poles, nulls & separators

Calling Sequence:
write_pls, file_name, pls [, nls [, sepr | |

Inputs:
file_name string the name of the file to be created. file.name =
’-> means write to std out

pls the structure containing all poles.

nls array of structures containing the nulls

3.2. CALCULATIONAL ROUTINES

18

sepr float array (3, n) contaning the separators

Keyword Parameters:
view = view the viewing transformation.

append if set the information is added to the end of the file, and
can be read using the multi option of rd_pns

dm=dm the domain matrix

3.2 Calculational Routines

all nulls
try to find as many nulls as possible using a combination of reasonable
initial guess locations. remove duplicate nulls. label the nulls Ai or Bj
for negative/positive nulls (using relabel nulls). return an array of null
structures.

Calling Sequence:
nls = all nulls(pls)

Keyword Parameters:
noasymp unless set a zero will be sought based on the asymptotic
field

Outputs:
nls the array of null structures.

all_seprs
given poles & nulls find all of the separators and return them as an array
of spr structures. fill in structure with sepr_info

Calling Sequence:
sprs = all_seprs(pls, nulls)

Keyword Parameters:
ref_max the number of refinements in the null-scan

no_info if set, exclude the calculation of the sepr_info

cribbon
Calculate the ribbon along the separator. This is a structure containing
several (3,n) arrays. cr.x - is the separator itself a (3,n) array cr.w - an
array of the nomralized widths s.t. Delta = w * sqrt(—I—/1.0) cr.pos -
array of vectors chosen to represent the edge of a current sheet w/ current
+I_* cr.neg - array of vectors chosen to represent the edge of a current sheet
w/ current -I_* cr.i0 - the fiducial current I_* for the separator

3.2. CALCULATIONAL ROUTINES

Calling Sequence:
cr = cribbon(pls, fl) or cr = cribbon(pls, nls, spr)

Inputs:
pls structure of poles

nls an array of separator structures
spr a single separator structure (refering to pls & nls)

Sl the field line array to use instead of the spr

connectivity
calculate domain fluxes for a set of sources. uses a Monter-Carlo method to
determine which poles are connected to which other poles. returns an array
cm(i,j) which the approximate flux connecting i to j i=0 refers to infinity.
the array returned is symmetric: cm(i,j) = cm(j,i) uses a bayesian estimate
of the flux connecting i to j when m_ of N.i and m_j of N_j line connect

the connecting value with maximum liklihood is em(i,j) = (m_i 4+ m_j)/(
N_i/Phii + N_j/Phij)

Calling Sequence:
cm = connectivity(pls)

Keyword Parameters:
nlines=nlines total number of lines to initiate from each source.
[300]

phicut=phicut if set nlines is set to 1.5*phi/phicut so 95\be used
noneg if set field lines from negative poles will not be used
doonly = name_list initialize field lines from only these poles.
err = err returns the statistical error in each value

maz_steps = max_steps the maximum number of steps to take
[10000]

current_solve
solve the equation governing the separator currents: i * L alog(e i0 / —i—
) + M.i + psi = psi0 where M is the mutual induction matrix, psi are the
separator vacuum fluxes and psi0 is the value they are required to have.
this cannot be solved if any element of the vector (psiO - psi)/(i0*L)
has magntiude greater than one. in this case psi0 is altered to make the
equation solvable and psi0 WILL BE CHANGED UPON RETURN.

Calling Sequence:
i = current_solve(psi0, si [, m])

Inputs:
pst0 a vector of desired fluxes. if this is unobtainable it is changed
to one which can be obtained.

3.2. CALCULATIONAL ROUTINES

st the structure of separator info. returned from sepr_info

Optional Inputs:
m the mutual induction matrix. returned by mut_induct_mat

Keyword Parameters:
sweep if set a solution is constructed by sweeping the matrix m
to its final value from 0.0. this will provide a unique solution
related to the one w/o induction matrix.

init—=1 an initial guess for the current. this will be disabled by the
sweep keyword.

erg=erg will return the energy of the current system.

domain_matrix
list the flux domains for a set of sources. Uses the nulls to decide which
separatrices exist. This is used to fill in a matrix dm(i,j) = dm(j,i) with
1 when i connects to j and 0 otherwise. row/column 0 stands for infinity.
row/column i stands for pole i-1

Calling Sequence:
dm = domain_matrix(pls, nls, [spr |)

Optional Inputs:
spr the separator structure. if present, use spr.anull and spr.bnull
to deduce connections

Keyword Parameters:
planar if set use only the photospheric separatrices

leaf if this is set AND spr is present the leaf domains are added
using one fan trace from each null *not* connected to a sepa-
rator.

mut_induct_mat
return a an array containing the mutual induction matrix for the separators
given.

Calling Sequence:
m = mut_induct_mat(pls, nls, sepr)

Inputs:
pls poles structure

nls array of nulls structures

spr array of separator structures

Keyword Parameters:
verbose if set will display a graph showing the progress

3.2. CALCULATIONAL ROUTINES 21

Outputs:
m the an NxN mutual inductance matrix

xadd _nulls
put up a window displaying poles and nulls (and possibly gamma lines),
and add new potential nulls.

Calling Sequence:
xadd_nulls, pls, nls

Inputs:
pls the list of poles

nls the null array. will be changed on output.

Keyword Parameters:
z=z put the initial guess at his level [default: z=0 |

view=view a viewing transformation

xselect_fl

on a window showing poles etc. use the mouse to select field lines at various
heights.

Calling Sequence:
xselect fl, pls

Inputs:
pls (optional) the list of poles

Keyword Parameters:

z0 = [zlist | the values of z to use for the possible field lines.
default is [10,20,30,40]. one field line will be integrated for
each height.

view=view nulls are displayed using viewing trasnform view.

quiet if set the lines are plotted w/o listing the initial points.

xselect_null

put up a window displaying poles and nulls (and possibly gamma lines),
and select a subset of the nulls with the cursor. return only that subset.

Calling Sequence:
new_nulls = xselect_nulls(nls [, pls |)

Inputs:
nls the complete list of nulls (from which to select

pls (optional) the list of poles

3.3. GRAPHICS ROUTINES 22

Keyword Parameters:
gamma draw the gamma lines (spines)

over nulls are already displayed
omit rather than selecting nulls to include, select nulls to omit

view=view nulls are displayed using viewing trasnform view.

3.3 Graphics Routines

dm_schematic
graph the domain matrix schematically. the graph will be two columns
(positive left of negatives) with the lines connecting between them.

Calling Sequence:
dm_schematic, pls, dm

Keyword Parameters:
title=title the title to print at the top

nosum if set the summary legent is suppressed

linestyles=linetsyles an array of length max(dm) st. connection
i,j is plotted with line style linestyle(dm(i,jI)-1) [default is
all 0s]

min_deg=min_deg plot only poles with degree above min_deg
min_deg=1 omits unconnected poles

nophi if set the total fluxes will be suppressed

format=format the format for printing the fluxes

fill_dmn_fp
overplot a specific domain footprint with a filled region. the footprint must
be a simple 4-sided region with opposite poles on diagonal vertices and
prone nulls (of any type) at the other vertices. the boundaries of the region
consist of spines and separatrix traces. *** if the region does not fit these
criteria nothing will be plotted ***

Calling Sequence:
fill_.dmn _fp, pls, i1, i2, nulll, null2

Inputs:
pls the complete poles structure
11, 12 indices from pls which form vertices of the region. OR then

names of the poles given as strings. these must match an entry
in pls.lab exactly.

nulll, null2 the poles (complete structures) which form the other
vertices

3.3. GRAPHICS ROUTINES 23

Keyword Parameters:
shrink=fctr shrink the region by a factor fctr (Ojfctrjl) for aes-
thetic purposes.

shade=shade the color with which to shade the region.

view=view a viewing transformation to apply.

Example:
IDL; show_fp, pls, nls IDL; fill. dmn_fp, pls, ’P03’, "N06’, nls(2),
nls(7)

pls_phi_hist

plot a histogram summarizing the fluxes in all poles a particular structure.

Calling Sequence:
pls_phi_plot, pls

Inputs:
pls the poles stucture to be summarized. pls.phi is used (and pos-
sibly scaled) and pls.lab to label the bins

Keyword Parameters:
scl=scl multiply fluxes by scl. [1.0]

mae if set then scl=1.0e16 meaning the fluxes are assumed be in G
Mm"2 and the plot will be in Mx.

phimax=phimax the range of the plot.
nlab=nlab label the largest nlab poles along the bottom. [5]

nmax=nmaz include only nmax largest positive and nmax larges
negative sources. default is to plot all of them.

title=title title for the top of the plot.

polka_map
plot locations of each pole in a poles structure as disks whose area is pro-
portional to their flux.

Calling Sequence:
polka_map, pls

Keyword Parameters:
over if not set a bounding box will be constructed. and a grey-
scale will be rendered

nolab omit labels

view = view will transform according to transformation in struc-
ture view. title=title

3.3. GRAPHICS ROUTINES 24

maxrad = mazxrad if set this will define the maximum radius in
data units [default = 0.1*xrange |

flux_scl=flux_scl the value of the flux to assign the maximum
radius [default is maximum flux]

axis=azx if set to 1 no axis will be draw if set to 2 a box will be

drawn

show_3dnulls
graph all the nulls in an array of null-structures

Calling Sequence:
show_3dnulls, nulls

Keyword Parameters:
label if set, display the labels of each null

show_3dpoles

plot locations of each pole in a poles structure — in 3d

Calling Sequence:
show_3dpoles, pls

Keyword Parameters:
zrange = [x0, x1 | force the xrange of plot window
yrange = [y0, y1 | force the yrange of plot window
zrange = [z0, z1 | force the zrange of plot window

over if not set a bounding box will be constructed.

nolab omit labels
zaxis = za the zaxis will go from 0 to za default is the full zrange
ar = az the x-rotation for the 3d projection

az = az the x-rotation for the 3d projection

show_connectivity
graph the connectivity on an exisiting graph of poles

Calling Sequence:
show _connectivity, pls, c_mat

Keyword Parameters:
min_flux = min_flur the minimum flux to indicate [0.5]
count = count return the number of connection

inf if set, connections to infinity are depicted as arrows
linestyle=linestyle

3.3. GRAPHICS ROUTINES

25

show_cr_skel
draw the skeleton of a current ribbon over an exisiting plot

Calling Sequence:
show _cr_skel, cr

Inputs:
cr structure containing the current ribbon as returned by cribbon

Keyword Parameters:
i = 1 the current (unormalized)

norm_i = ni the normalized current i/i_*

view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d

ribs=n if set the "ribs” of the skeleton are shown. show every n
ribs

show_dm
graph the domain matrix on an exisiting graph of poles

Calling Sequence:
show_dm, pls, dm

Keyword Parameters:
linestyle = linestyle linestyle used to l]plot lines

mindegree = md will only show edges connecting to vertices of
degree md or greater

inf if set arrows are used to show linkages to infinity

show_domain
show field lines from the domain ia/ib. nlines field lines are started at ia
& traced until they hit another pole. only those which terminate at ib are
shown.

Calling Sequence:
show_domain, pls, ia, ib

Keyword Parameters:
ntries = ntries the number of lines in the monte carlo integral
[100]

nlines = nlines the number of lines to draw. if unspecified then
every one fromthe MC integral is drawn

threed same as graph, but for 3d rendering

rad = rad radius to begin field lines [2*pls.drmax |

3.3. GRAPHICS ROUTINES

26

view = view project with view transfrom

max_segs = max_segs set to the maximum number of segments

in a line [1000 |

show_flux_tube
graph a set of field lines which start in a ring about the point x0. the ring
has radius r and is oriented normal to the magnetic field at point x0. there
are nlines field lines in the ring

Calling Sequence:
show_flux_tube, pls, x0

Inputs:
pls the poles structure

0 3-element array (float) of the initial point.

Keyword Parameters:
nlines=nlines number of lines to use [30]

radius=radius radius of circle [10*pls.drmax |
threed if set, render in 3d

view=view use view structure

circle if set draw the circle around x0

clip if set clip the field lines

dir if set to +1 ot -1 only that direction will be traced

show _fp
graph the locations of sources, nulls and footprints of the field. footprints
are shown as dashed and solid lines. solid lines denot photospheric spines,
dashed lines are the footprints of separatrices. dotted lines are the spines
of coronal null points.

Calling Sequence:
show_fp, pls, nls

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

nosepx do not show the separatrix field lines
nogamma do not show the gamma-lines (spines)
view = view perform the viewing transformation
threed show the field lines in 3d

clip if set, each of the lines in clipped

3.3. GRAPHICS ROUTINES 27

maz_segs set to the maximum number of segments in a line [1000

]

label label the nulls

axis=azx if set to 1 no axis will be draw if set to 2 a box will be
drawn

over plot is made over the exisiting plot

color if set the pos/neg poles are shown in white/black this is
useful when plotting over a grey-scale magnetogram

mg setting this is equivalent to /over, /color which is useful when
overplotting on a magnetogram

show_loop_skeleton
given a field line and a set of radii, draw a sekeloon consisting of rings
arounf each point in the field line

Calling Sequence:
show_loop_skeleton, fl, rad

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d
skip=skip if set then only every skip ribs are rendered. [1]

show _nulls
graph all the nulls in an array of null-structures

Calling Sequence:
show _nulls, nulls

Keyword Parameters:
label if set, display the labels of each null

new draw new set of axes.
view = view will transform according to transformation in struc-

ture view.

show _poles
plot locations of each pole in a poles structure

Calling Sequence:
show _poles, pls

Keyword Parameters:
zrange = [0, x1 | force the xrange of plot window

3.3. GRAPHICS ROUTINES

28

yrange = [y0, y1] force the yrange of plot window
over if not set a bounding box will be constructed.

color if set the pos/neg poles are shown in white/black this is
useful when plotting over a grey-scale magnetogram

nolab omit labels on the poles

axis=azx if set to 1 no axis will be draw if set to 2 a box will be
drawn

view = view - will transform according to transformation in
structure view.

mg setting this is equivalent to /over, /color which is useful when
overplotting on a magnetogram

show_random_3dlines
graph nlines different field lines

Calling Sequence:
show_random_3dlines, pls

Keyword Parameters:
nlines=nlines the number of lines to draw. [30]

show _sepr
draw all the separators in array sepr

Calling Sequence:
show _sepr, pls, nls, spr

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d
shadow if set (& in 3d mode) a projection onto z=0 is also shown

clip clip the field line

show _sepx
graph field lines from the separatrix of null.

Calling Sequence:
show _sepx, pls, null

Inputs:
pls the poles structure

null a single null structure

3.3. GRAPHICS ROUTINES 29

Keyword Parameters:
view = view set to the viewing transformation

thrnge = [th0, th1] a 2-element array defining the range of
theta to be used. default is [null.theta0, null.theta0 + !pi

]

thvals = thv an array of theta values

nlines = n the number of lines to draw. default is 30
threed if set the field lines are rendered in 3d.

clip if set this will clip the field lines

sum_graph
draw the domain graph and null graph for a set of poles, nulls and separators

Calling Sequence:
sum_graph, pls, nls, spr, [dm]

Inputs:
psl the poles structure

nls an array of null structures

spr an array of separators. spr.anull and spr.bnull are unsed to
index the nls connected by each separator. this is used to
generate the domain matrix if it is not passed in separately

Optional Inputs:
dm the domain matrix

Keyword Parameters:
title=title a title for the top of the plot

noorphans if set the null graph will omit nulls w/o separators.
leaf if keyword is set, and spr is present, use the slower do-

main_matrix algorithm which finds leaf domains. from nulls
w/ unbroken fans.

voronoi_pls
a graph of the voronoi tesselation formed by a set of poles

Calling Sequence:
voronoi_pls, pls

Keyword Parameters:
fill if set the positive regions will be filled using the default line-fill
pattern.

3.4. ANALYSIS ROUTINES

30

3.4 Analysis Routines

dm_schematic
graph the domain matrix schematically. the graph will be two columns
(positive left of negatives) with the lines connecting between them.

Calling Sequence:
dm_schematic, pls, dm

Keyword Parameters:
title=title the title to print at the top

nosum if set the summary legent is suppressed

linestyles=linetsyles an array of length max(dm) st. connection
i,j is plotted with line style linestyle(dm(i,jI)-1) [default is
all 0s]

min_deg=min_deg plot only poles with degree above min_deg
min_deg=1 omits unconnected poles

nophi if set the total fluxes will be suppressed

format=format the format for printing the fluxes

domain_char
calculate flux and volume of the flux domain connecting poles ia to ib.
monte carlo integration is used to perform the integrals. field lines are
initialized at random on pole ia and traced to their terminus.

Calling Sequence:
res = domain_char(pls, ia, ib, add=add)

Keyword Parameters:
n = mn the number of lines in the monte carlo integral [100]

graph if set each of the lines connecting ia-;ib are rendered
threed same as graph, but for 3d rendering

rad radius to begin field lines [2*pls.drmax |

index_check

check poles and nulls against two Poincare indices involving the numbers
of various sources & null points: P2d = prone - upright - sources + 2 P3d
= B-type - A-type - positive + negative if all nulls are present both indices
will be zero. if P2d is positive there are at least P2d prone nulls missing.
if it is negative, there are at least -P2d upright nulls missing. etc. [see
Longcope & Klapper, ApJ v.579, p.468 (2002) | the program prints out
the numbers of each type & reports on the conclusions derived from the
indices. if the separator is passed in it also reports the number of domains
topologically required. domains = separators + sources - coronal-nulls - 1
[Beveridge & Longocpe Sol Phys v.227, p.193 (2005)]

3.4. ANALYSIS ROUTINES 31

Calling Sequence:
index_check, pls, nls, [spr |

Inputs:
pls the poles structure

nls the array of nulls structures

Optional Inputs:
spr the array of separator structures

line_info
return a 3 X N array (float) where each point contains [len, B, b" . z” |

Calling Sequence:
info = line_info(pls, fl)

null_graph
use the null & separator structures to plot a schematic graph with pos.
nulls in left column, negative nulls in right column connected by a line for
each separator

Calling Sequence:
null_graph, nls, spr

Inputs:

nls an array of null structures

spr an array of separators. spr.anull and spr.bnull are unsed to
index the nls connected by each separator

Keyword Parameters:
title=title the title to print at the top

nosum if set the summary legent is suppressed

noorphans if set the graph will omit nulls w/o separators.

pls_phi_hist

plot a histogram summarizing the fluxes in all poles a particular structure.

Calling Sequence:
pls_phi_plot, pls

Inputs:
pls the poles stucture to be summarized. pls.phi is used (and pos-
sibly scaled) and pls.lab to label the bins

Keyword Parameters:
sel=sel multiply fluxes by scl. [1.0]

3.4. ANALYSIS ROUTINES

32

ma if set then scl=1.0e16 meaning the fluxes are assumed be in G
Mm"2 and the plot will be in Mx.

phimax=phimax the range of the plot.
nlab=nlab label the largest nlab poles along the bottom. [5]

nmar=nmazx include only nmax largest positive and nmax larges
negative sources. default is to plot all of them.

title=title title for the top of the plot.

sepr_info

return an array (or structure) containing magnetic information on each of
the magnetic separators in the array sepr. the information: [length, flux,
1.0, s, hel] 1.0: I-*/c in units of flux/length For Mx & cm 1.0 has units
of Mx/cm = 10 Amps (i.e. 10*1.0 is the current in Amps) For 1.0e16 Mx
& Mm 1.0 has units of 1.0e9 Amps hel: relative helicty per current. The
relative helicity of the entire field is the sum over all separators as H.R =
\sum_i hel(i) cur(i)

Calling Sequence:
info = sepr_info(pls, nulls, sepr)

Keyword Parameters:
structure if set the information is handed back as a structure,
rather than an array.
lineclose if set the flux is calculated using a return path making
a straight line between the null points

sum_graph
draw the domain graph and null graph for a set of poles, nulls and separators

Calling Sequence:
sum_graph, pls, nls, spr, [dm]

Inputs:
psl the poles structure
nls an array of null structures

spr an array of separators. spr.anull and spr.bnull are unsed to
index the nls connected by each separator. this is used to
generate the domain matrix if it is not passed in separately

Optional Inputs:
dm the domain matrix

Keyword Parameters:
title=title a title for the top of the plot
noorphans if set the null graph will omit nulls w/o separators.
leaf if keyword is set, and spr is present, use the slower do-
main_matrix algorithm which finds leaf domains. from nulls
w/ unbroken fans.

3.5. VIEWING TRANSFORMS

33

3.5 Viewing Transforms

disk2tan_plane
translate a set of poles from disk to tangent plane coordinates. poles pls
have x, y coordinates in terms of location on the disk (radius rad) & a z
coordinate giving distance above surface (same units as x & y). translate
this to coordinates (in Mm) on a tangent plane centered at heliographic
coordinates (lat, cmd) and disk location (x0, yO) return the inverse
transformation as a structure view containing the matrix, the displacement
& the heliographic coodinates (in degrees) of the transformation the disk
location xd is related to tangent_plane location xtp by xd = view.mat #
xtp 4+ view.disp xd now contains a z coordinates indicating vertical location

Calling Sequence:
view = disk2tan_plane(pls)

Inputs:
pls - the poles. will be changed upon return

Keyword Parameters:
rad = rad radius of disk [default = 925 arcsec |

b = b the b-angle (deg) for heliographic coods. [default = 0 |
p = p position angle (deg) for heliographic coods. [default = 0 |

center_hel = (lat, cmd) force center to be at there helio-
graphic coordinates

center_disk = (x0, y0) force center to be at this disk location
(default = center of charge)

date if set this string contains the date of the transformation

vert if set the fluxes in disk corrdinates are assumed to be vertical
field Bz integrated over pixels rather than line-of-sight field.

mg = mg a data structure which will be used to replace keywords
rad, b, p and date in one call. the structure

must contain fields mg.b0, mg.p, mg.rad, mg.date

new_tan_plane
translate a set of poles from one tangent plane to a new tangent plane.
change pole the pole structure and the viewing structure. the transforma-
tion is specified by its cantact-point

Calling Sequence:
new_tan_plane, pls, view, new_center [, options | new_tan_plane, pls,
view, match=view2

Inputs:
pls the poles. will be changed upon return.

3.5. VIEWING TRANSFORMS

34

view the viewing transformation - changed upon return.

new_center the new center float(2) specified in heliographic or
disk coordinates

Keyword Parameters:
match = view2 advance tangent plane of this view to the
date/time of view, and use this center to do the tangent plane.
if this option is set the new_center argument is not used.

hel if set interpret center as (lat, cmd) in heliographic coordinates
[defult]

disk if set interpret center as (x0, yO) in arcseconds from center
of disk

tp if set interpret center = (x0, y0) in the tangent plane

solar_rotate_view

given a structure for viewing at a tangent plane. advance the view by a
fixed time interval (in seconds) according to the solar rotation. the center of
the of the tangent plane is (lat, cmd), b angle and p angle will be given in
degrees. the view structure contains the following elements mat: the 3 x 3
transformation matrix disp: the displacement vector. transformation from
tan-plane coordinates xtp to disk coordinates xd: xd = view.mat # xtp +
view.disp b: the b angle (degrees) p: the p angle (degrees) rad: apparent
solar radius (arcseconds)

Calling Sequence:
new_view = solar_rotate_view(view, time)

Inputs:
view = view the old view

time time (in seconds)

Keyword Parameters:
to = date if set advance the view to a date specified by the string
date from view.date

rad=rad this new radius will be used rather thant the one in view.
this permits a change in perspective as between SOHO and an
Earth-orbiting satellite

b0=b0 this new b0 will be used rather thant the one in view. this
permits a change in perspective as between SOHO and an
Earth-orbiting satellite

shift=[dz,dy] shift the view by a [dx,dy] arcseconds. this permits
co-alignment

3.5. VIEWING TRANSFORMS 35

view2time
from a single viewing trasnformation or an array return a float (or array
of floats) denoting the time from some reference point. unless otherwise
specified the time will be in hours and the reference time will be the begining
of the day of the first element.

Calling Sequence:
time = view2time(view)

Inputs:
view a view-xform structure, or array of structures.

Keyword Parameters:
days if set the time is converted to decimal days

from=datestr a string giving the reference tim

Outputs:
time a float or float array

Chapter 4

Alphabetical List of
Routines

4.1 Top level Routines

all nulls
try to find as many nulls as possible using a combination of reasonable
initial guess locations. remove duplicate nulls. label the nulls Ai or Bj
for negative/positive nulls (using relabel nulls). return an array of null
structures.

Calling Sequence:
nls = all nulls(pls)

Keyword Parameters:
noasymp unless set a zero will be sought based on the asymptotic
field

Outputs:
nls the array of null structures.

all_seprs
given poles & nulls find all of the separators and return them as an array
of spr structures. fill in structure with sepr_info

Calling Sequence:
sprs = all_seprs(pls, nulls)

Keyword Parameters:
ref_max the number of refinements in the null-scan

no_info if set, exclude the calculation of the sepr_info

4.1. TOP LEVEL ROUTINES

37

cm2csv
given a set of poles and an array containing the connectivity matrix, output
in connectivity matrix as a .csv (comma separated values) file.

Calling Sequence:
cm2csv, pls, cm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

cm connectvity matrix — int matrix which is 0 for no connection
and ;0 for connection.

Keyword Parameters:
minflur=minflur the minimum flux to include (poles whose con-
nections total less than this are not included)

file=file the name of an output file [’cm.csv’]

cm _list
given a set of poles and an array containing the connection matrix (returned
by connectivity) print out a summary of the connections

Calling Sequence:
cm_list, cm, [pls |

Keyword Parameters:
ntop=ntop print, the ntop largest connections. [25 |

err=err if set, this is the error matrix from connectivity

format=format the format for printing the fluxes

connectivity

calculate domain fluxes for a set of sources. uses a Monter-Carlo method to
determine which poles are connected to which other poles. returns an array
cm(i,j) which the approximate flux connecting i to j i=0 refers to infinity.
the array returned is symmetric: cm(i,j) = cm(j,i) uses a bayesian estimate
of the flux connecting i to j when m_ of N.i and m_j of N_j line connect
the connecting value with maximum liklihood is ecm(i,j) = (mi + m.j)/(
N_i/Phii + N_j/Phij)

Calling Sequence:
cm = connectivity(pls)

Keyword Parameters:
nlines=nlines total number of lines to initiate from each source.
[300]

phicut=phicut if set nlines is set to 1.5*phi/phicut so 95\be used

4.1. TOP LEVEL ROUTINES

38

noneg if set field lines from negative poles will not be used
doonly = name_list initialize field lines from only these poles.
err = err returns the statistical error in each value

maz_steps = max_steps the maximum number of steps to take
[10000]

cribbon
Calculate the ribbon along the separator. This is a structure containing
several (3,n) arrays. cr.x - is the separator itself a (3,n) array cr.w - an
array of the nomralized widths s.t. Delta = w * sqrt(—I—/1.0) cr.pos -
array of vectors chosen to represent the edge of a current sheet w/ current
+I_* cr.neg - array of vectors chosen to represent the edge of a current sheet
w/ current -I_* cr.i0 - the fiducial current I_* for the separator

Calling Sequence:
cr = cribbon(pls, fl) or cr = cribbon(pls, nls, spr)

Inputs:
pls structure of poles

nls an array of separator structures
spr a single separator structure (refering to pls & nls)

f1 the field line array to use instead of the spr

current_solve
solve the equation governing the separator currents: i * L alog(e i0 / —i—
) + M.i + psi = psi0 where M is the mutual induction matrix, psi are the
separator vacuum fluxes and psi0 is the value they are required to have.
this cannot be solved if any element of the vector (psiO - psi)/(i0*L)
has magntiude greater than one. in this case psi0 is altered to make the
equation solvable and psi0 WILL BE CHANGED UPON RETURN.

Calling Sequence:
i = current_solve(psi0, si [, m |)

Inputs:
psi0 a vector of desired fluxes. if this is unobtainable it is changed
to one which can be obtained.

st the structure of separator info. returned from sepr_info

Optional Inputs:
m the mutual induction matrix. returned by mut_induct_mat

Keyword Parameters:
sweep if set a solution is constructed by sweeping the matrix m
to its final value from 0.0. this will provide a unique solution
related to the one w/o induction matrix.

4.1. TOP LEVEL ROUTINES

39

init=1 an initial guess for the current. this will be disabled by the
sweep keyword.

erg=erg will return the energy of the current system.

disk2tan_plane
translate a set of poles from disk to tangent plane coordinates. poles pls
have x, y coordinates in terms of location on the disk (radius rad) & a z
coordinate giving distance above surface (same units as x & y). translate
this to coordinates (in Mm) on a tangent plane centered at heliographic
coordinates (lat, cmd) and disk location (x0, yO) return the inverse
transformation as a structure view containing the matrix, the displacement
& the heliographic coodinates (in degrees) of the transformation the disk
location xd is related to tangent_plane location xtp by xd = view.mat #
xtp + view.disp xd now contains a z coordinates indicating vertical location

Calling Sequence:
view = disk2tan_plane(pls)

Inputs:
pls - the poles. will be changed upon return

Keyword Parameters:
rad = rad radius of disk [default = 925 arcsec |

b = b the b-angle (deg) for heliographic coods. [default = 0 |
p = p position angle (deg) for heliographic coods. [default = 0]

center_hel = (lat, cmd) force center to be at there helio-
graphic coordinates

center_disk = (0, y0) force center to be at this disk location
(default = center of charge)

date if set this string contains the date of the transformation

vert if set the fluxes in disk corrdinates are assumed to be vertical
field Bz integrated over pixels rather than line-of-sight field.

mg = mg a data structure which will be used to replace keywords
rad, b, p and date in one call. the structure

must contain fields mg.b0, mg.p, mg.rad, mg.date

dm2tex
given a set of poles and an array containing the domain matrix, produce a
LaTeX table (on the screen) with the tabel.

Calling Sequence:
dm2tex, pls, dm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

4.1. TOP LEVEL ROUTINES

40

dm domain matrix — int matrix which is 0 for no connection and
;0 for connection. its value will be used to determined the
pinted character.

Keyword Parameters:
vstring = vstring a string array w/ N elements where N =
max(dm)+1. vstring(dm(i,j)) will be printed at each location.
default = [07, '1°, 72", ... |

dm _print
given a set of poles and an array containing the domain matrix, print a
table

Calling Sequence:
dm_print, pls, dm

Inputs:
pls the poles structure (pls.phi & pls.lab are used)

dm domain matrix — int matrix which is 0 for no connection and
;0 for connection. its value will be used to determined the
pinted character.

Keyword Parameters:
vstring = vstring a string array w/ N elements where N =
max(dm)+1. vstring(dm(i,j)) will be printed at each location.
default = [°0’, ’17, 2", ... |
col_space=cs spacing between column. default is 2 setting to 0
will make the heading labels run together

dm_schematic
graph the domain matrix schematically. the graph will be two columns
(positive left of negatives) with the lines connecting between them.

Calling Sequence:
dm_schematic, pls, dm

Keyword Parameters:
title=title the title to print at the top

nosum if set the summary legent is suppressed

linestyles=linetsyles an array of length max(dm) st. connection
i,j is plotted with line style linestyle(dm(i,jI)-1) [default is
all Os |

min_deg=min_deg plot only poles with degree above min_deg
min_deg=1 omits unconnected poles

nophi if set the total fluxes will be suppressed

4.1. TOP LEVEL ROUTINES 41

format=format the format for printing the fluxes

domain_char
calculate flux and volume of the flux domain connecting poles ia to ib.
monte carlo integration is used to perform the integrals. field lines are
initialized at random on pole ia and traced to their terminus.

Calling Sequence:
res = domain_char(pls, ia, ib, add=add)

Keyword Parameters:
n = mn the number of lines in the monte carlo integral [100]

graph if set each of the lines connecting ia-;ib are rendered
threed same as graph, but for 3d rendering

rad radius to begin field lines [2*pls.drmax |

domain_matrix
list the flux domains for a set of sources. Uses the nulls to decide which
separatrices exist. This is used to fill in a matrix dm(i,j) = dm(j,i) with
1 when i connects to j and 0 otherwise. row/column 0 stands for infinity.
row/column i stands for pole i-1

Calling Sequence:
dm = domain_matrix(pls, nls, [spr |)

Optional Inputs:
spr the separator structure. if present, use spr.anull and spr.bnull
to deduce connections

Keyword Parameters:
planar if set use only the photospheric separatrices

leaf if this is set AND spr is present the leaf domains are added
using one fan trace from each null *not* connected to a sepa-
rator.

fill_.dmn_fp
overplot a specific domain footprint with a filled region. the footprint must
be a simple 4-sided region with opposite poles on diagonal vertices and
prone nulls (of any type) at the other vertices. the boundaries of the region
consist of spines and separatrix traces. *** if the region does not fit these
criteria nothing will be plotted ***

Calling Sequence:
fill_.dmn_fp, pls, i1, i2, nulll, null2

Inputs:
pls the complete poles structure

4.1. TOP LEVEL ROUTINES

42

11, 12 indices from pls which form vertices of the region. OR then
names of the poles given as strings. these must match an entry
in pls.lab exactly.

nulll, null2 the poles (complete structures) which form the other
vertices

Keyword Parameters:
shrink=fctr shrink the region by a factor fctr (Ojfctril) for aes-
thetic purposes.

shade=shade the color with which to shade the region.

view=view a viewing transformation to apply.

Example:
IDL; show_fp, pls, nls IDL;, fill. dmn_fp, pls, "P03’, 'N06’, nls(2),
nls(7)

index_check

check poles and nulls against two Poincare indices involving the numbers
of various sources & null points: P2d = prone - upright - sources + 2 P3d
= B-type - A-type - positive + negative if all nulls are present both indices
will be zero. if P2d is positive there are at least P2d prone nulls missing.
if it is negative, there are at least -P2d upright nulls missing. etc. [see
Longcope & Klapper, ApJ v.579, p.468 (2002) | the program prints out
the numbers of each type & reports on the conclusions derived from the
indices. if the separator is passed in it also reports the number of domains
topologically required. domains = separators + sources - coronal-nulls - 1
[Beveridge & Longocpe Sol Phys v.227, p.193 (2005)]

Calling Sequence:
index_check, pls, nls, [spr |

Inputs:
pls the poles structure

nls the array of nulls structures

Optional Inputs:
spr the array of separator structures

inv_lam_func
return the inverse of function \Lamda(u) = u In(e / —u—) = 12.745
f(u/12.745)

Calling Sequence:
u = inv_lam_func(lambda)

4.1. TOP LEVEL ROUTINES 43

latex_poles
output a table in LaTeX format summarizing the poles

Calling Sequence:
latex_poles, pls

Inputs:
pls the structure of poles

Keyword Parameters:
view = view is used to translate poles into heliographic coords

tan_plane if set coordinates are recoreded in Mm
pwr = pwr write fluxes in units of 10" {pwr} Mx

tot if set place a total at the bottom of each side

line_info
return a 3 X N array (float) where each point contains [len, B, b" . z” |

Calling Sequence:
info = line_info(pls, fl)

mut_induct_mat

return a an array containing the mutual induction matrix for the separators
given.

Calling Sequence:
m = mut_induct_mat(pls, nls, sepr)

Inputs:
pls poles structure

nls array of nulls structures

spr array of separator structures

Keyword Parameters:
verbose if set will display a graph showing the progress

Outputs:
m the an NxN mutual inductance matrix

new_tan_plane
translate a set of poles from one tangent plane to a new tangent plane.
change pole the pole structure and the viewing structure. the transforma-
tion is specified by its cantact-point

Calling Sequence:
new_tan_plane, pls, view, new_center [, options] new_tan_plane, pls,
view, match=view2

4.1. TOP LEVEL ROUTINES

44

Inputs:
pls the poles. will be changed upon return.

view the viewing transformation - changed upon return.

new_center the new center float(2) specified in heliographic or
disk coordinates

Keyword Parameters:
match = view2 advance tangent plane of this view to the
date/time of view, and use this center to do the tangent plane.
if this option is set the new_center argument is not used.

hel if set interpret center as (lat, cmd) in heliographic coordinates
[defult]

disk if set interpret center as (x0, y0) in arcseconds from center
of disk

tp if set interpret center = (x0, y0O) in the tangent plane

null_graph
use the null & separator structures to plot a schematic graph with pos.
nulls in left column, negative nulls in right column connected by a line for
each separator

Calling Sequence:
null_graph, nls, spr

Inputs:
nls an array of null structures

spr an array of separators. spr.anull and spr.bnull are unsed to
index the nls connected by each separator

Keyword Parameters:
title=title the title to print at the top

nosum if set the summary legent is suppressed

noorphans if set the graph will omit nulls w/o separators.

pixel2tan_plane
translate a set of poles from to tangent plane coordinates from coordinates
given in terms of pixels relative to some arbitrary point. the location on
the disk will be inferred by specifying (lat,cmd) for some reference pixel,
ref_pixel, in the image (assumed to be center-of-charge) and the pixel scale
(assumed to be 1 arcsecond). poles pls have x, y coordinates in terms of
location on the disk (radius rad) & once again the z coordinate gives dis-
tance above surface (same units as x & y). translate this to coordinates
(in Mm) on a tangent plane centered at heliographic coordinates (lat,cmd)

4.1. TOP LEVEL ROUTINES 45

and pixle-location ref_pixel. return the inverse transformation as a struc-
ture view containing the matrix, the displacement & the heliographic cood-
inates (in degrees) of the transformation the pixel-location xp is related to
tangent_plane location xtp by xp = view.mat # xtp + view.disp xp now
contains a z coordinates indicating vertical location

Calling Sequence:
view = pixel2tan_plane(pls, lat, cmd)

Inputs:
pls the poles. will be changed upon return

lat heliographic latitude of ref_pixel
cmd heliographic longitude of ref_pixel

Keyword Parameters:
rad = rad radius of disk [default = 925 arcsec |

b = b the b-angle (deg) for heliographic coods. [default = 0 |
p = p position angle (deg) for heliographic coods. [default = 0]

ref_pixel 2 element array containin the pixel to which lat and cmd
refer

piz_scale size of pixels in arcseconds

pls_phi_hist

plot a histogram summarizing the fluxes in all poles a particular structure.

Calling Sequence:
pls_phi_plot, pls

Inputs:
pls the poles stucture to be summarized. pls.phi is used (and pos-
sibly scaled) and pls.lab to label the bins

Keyword Parameters:
sel=scl multiply fluxes by scl. [1.0]

mae if set then scl=1.0e16 meaning the fluxes are assumed be in G
Mm"2 and the plot will be in Mx.

phimax=phimax the range of the plot.
nlab=nlab label the largest nlab poles along the bottom. [5]

nmar=nmazx include only nmax largest positive and nmax larges
negative sources. default is to plot all of them.

title=title title for the top of the plot.

polka_map
plot locations of each pole in a poles structure as disks whose area is pro-
portional to their flux.

4.1. TOP LEVEL ROUTINES 46

Calling Sequence:
polka_map, pls

Keyword Parameters:
over if not set a bounding box will be constructed. and a grey-
scale will be rendered

nolab omit labels

view = view will transform according to transformation in struc-
ture view. title=title

mazrad = maxrad if set this will define the maximum radius in
data units [default = 0.1*xrange]

flux_scl=flux_scl the value of the flux to assign the maximum
radius [default is maximum flux |

axis=ax if set to 1 no axis will be draw if set to 2 a box will be
drawn

rd_pns
read in a .pns file containg poles, nulls & separators. return all of these as
the appropriate structures/arrays. a file may contain only poles, or poles &
nulls. and the remaining structures will not be set upon return. old-style
.mp files, containing only poles may be read in. a line @— will separate
multiple entries in a single file. if keyword multi is set then read through
multi-1 of these lines.

Calling Sequence:
rd_pus, file_name, pls [, nulls [, sepr |]

Keyword Parameters:
view = view will return the viewing transformation (if present)

dm = dm will return the domain matrix (if present)

multi is set read through multi-1 different entries if there are not
this many entries return multi set to -1.

norefine if set the null positions will not be refined

info if set the separator information will be stored in the sturcture.
this takes additional time.

norelabel if set the nulls will not be relabeled
noends if set the end-points of spines will not be found.

rmax = rmazx (fix rmax)

sepr_info
return an array (or structure) containing magnetic information on each of
the magnetic separators in the array sepr. the information: [length, flux,
1.0, s, hel] I.0: I.*/c in units of flux/length For Mx & cm 1.0 has units

4.1. TOP LEVEL ROUTINES 47

of Mx/cm = 10 Amps (i.e. 10*1.0 is the current in Amps) For 1.0e16 Mx
& Mm 1.0 has units of 1.0e9 Amps hel: relative helicty per current. The
relative helicity of the entire field is the sum over all separators as H.R =

\sum_i hel(i) cur(i)

Calling Sequence:
info = sepr_info(pls, nulls, sepr)

Keyword Parameters:
structure if set the information is handed back as a structure,

rather than an array.
lineclose if set the flux is calculated using a return path making
a straight line between the null points

show_3dnulls
graph all the nulls in an array of null-structures

Calling Sequence:
show_3dnulls, nulls

Keyword Parameters:
label if set, display the labels of each null

show_3dpoles

plot locations of each pole in a poles structure — in 3d

Calling Sequence:
show_3dpoles, pls

Keyword Parameters:
zrange = [x0, x1] force the xrange of plot window
yrange = [y0, y1] force the yrange of plot window
zrange = [20, z1] force the zrange of plot window
over if not set a bounding box will be constructed.

nolab omit labels
zaxis = za the zaxis will go from 0 to za default is the full zrange

ar = az the x-rotation for the 3d projection

az = az the x-rotation for the 3d projection

show_connectivity
graph the connectivity on an exisiting graph of poles

Calling Sequence:
show_connectivity, pls, c_mat

4.1. TOP LEVEL ROUTINES

48

Keyword Parameters:
min_flux = min_flur the minimum flux to indicate [0.5]

count = count return the number of connection

inf if set, connections to infinity are depicted as arrows
linestyle=linestyle

show_cr_skel
draw the skeleton of a current ribbon over an exisiting plot

Calling Sequence:
show _cr_skel, cr

Inputs:
cr structure containing the current ribbon as returned by cribbon

Keyword Parameters:
i = i the current (unormalized)

norm_i = ni the normalized current i/i_*

view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d

ribs=n if set the ”ribs” of the skeleton are shown. show every n
ribs

show_dm
graph the domain matrix on an exisiting graph of poles

Calling Sequence:
show_dm, pls, dm

Keyword Parameters:
linestyle = linestyle linestyle used to l]plot lines

mindegree = md will only show edges connecting to vertices of
degree md or greater

inf if set arrows are used to show linkages to infinity

show_domain
show field lines from the domain ia/ib. nlines field lines are started at ia
& traced until they hit another pole. only those which terminate at ib are
shown.

Calling Sequence:
show_domain, pls, ia, ib

4.1. TOP LEVEL ROUTINES

49

Keyword Parameters:
ntries = ntries the number of lines in the monte carlo integral
[100]

nlines = nlines the number of lines to draw. if unspecified then
every one fromthe MC integral is drawn

threed same as graph, but for 3d rendering
rad = rad radius to begin field lines [2*pls.drmax |
view = view project with view transfrom

max_segs = max_segs set to the maximum number of segments
in a line [1000 |

show_flux_tube
graph a set of field lines which start in a ring about the point x0. the ring
has radius r and is oriented normal to the magnetic field at point x0. there
are nlines field lines in the ring

Calling Sequence:
show_flux_tube, pls, x0

Inputs:
pls the poles structure

x0 3-element array (float) of the initial point.

Keyword Parameters:
nlines=nlines number of lines to use [30]

radius=radius radius of circle [10*pls.drmax |
threed if set, render in 3d

view=view use view structure

circle if set draw the circle around x0

clip if set clip the field lines

dir if set to +1 ot -1 only that direction will be traced

show _fp
graph the locations of sources, nulls and footprints of the field. footprints
are shown as dashed and solid lines. solid lines denot photospheric spines,
dashed lines are the footprints of separatrices. dotted lines are the spines
of coronal null points.

Calling Sequence:
show_fp, pls, nls

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

4.1. TOP LEVEL ROUTINES

nosepx do not show the separatrix field lines
nogamma do not show the gamma-lines (spines)
view = view perform the viewing transformation
threed show the field lines in 3d

clip if set, each of the lines in clipped

maz_segs set to the maximum number of segments in a line [1000

]
label label the nulls

axis=azx if set to 1 no axis will be draw if set to 2 a box will be
drawn

over plot is made over the exisiting plot

color if set the pos/neg poles are shown in white/black this is
useful when plotting over a grey-scale magnetogram

mg setting this is equivalent to /over, /color which is useful when
overplotting on a magnetogram

show_gamma lines
graph all the gamma lines for a set of nulls

Calling Sequence:
show_gamma _lines, pls, nulls

Keyword Parameters:
view = view - will transform according to transformation in
structure view. nosepx - do not show the separatrix field lines
nogamma - do not show the gamma field lines view - perform
the viewing transformation threed - show the field lines in 3d
clip - if set, each of the lines in clipped max_segs - set to the
maximum number of segments in a line [1000]

show _loop_skeleton
given a field line and a set of radii, draw a sekeloon consisting of rings
arounf each point in the field line

Calling Sequence:
show _loop_skeleton, fl, rad

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d
skip=skip if set then only every skip ribs are rendered. [1]

4.1. TOP LEVEL ROUTINES 51

show _nulls
graph all the nulls in an array of null-structures

Calling Sequence:
show_nulls, nulls

Keyword Parameters:
label if set, display the labels of each null

new draw new set of axes.

view = view will transform according to transformation in struc-
ture view.

show _poles
plot locations of each pole in a poles structure

Calling Sequence:
show _poles, pls

Keyword Parameters:
zrange = [20, x1]| force the xrange of plot window

yrange = [y0, y1 | force the yrange of plot window
over if not set a bounding box will be constructed.

color if set the pos/neg poles are shown in white/black this is
useful when plotting over a grey-scale magnetogram

nolab omit labels on the poles

axis=azx if set to 1 no axis will be draw if set to 2 a box will be
drawn

view = view - will transform according to transformation in
structure view.

mg setting this is equivalent to /over, /color which is useful when
overplotting on a magnetogram

show_random _3dlines
graph nlines different field lines

Calling Sequence:
show_random_3dlines, pls

Keyword Parameters:
nlines=nlines the number of lines to draw. [30]

show_sepr
draw all the separators in array sepr

4.1. TOP LEVEL ROUTINES

52

Calling Sequence:
show _sepr, pls, nls, spr

Keyword Parameters:
view = view will transform according to transformation in struc-
ture view.

threed show field line in 3d
shadow if set (& in 3d mode) a projection onto z=0 is also shown

clip clip the field line

show _sepx
graph field lines from the separatrix of null.

Calling Sequence:
show_sepx, pls, null

Inputs:
pls the poles structure

null a single null structure

Keyword Parameters:
view = view set to the viewing transformation

thrnge = [th0, th1] a 2-element array defining the range of
theta to be used. default is [null.thetaO, null.thetaO + !pi

]

thvals = thv an array of theta values

nlines = n the number of lines to draw. default is 30
threed if set the field lines are rendered in 3d.

clip if set this will clip the field lines

solar_rotate_view

given a structure for viewing at a tangent plane. advance the view by a
fixed time interval (in seconds) according to the solar rotation. the center of
the of the tangent plane is (lat, cmd), b angle and p angle will be given in
degrees. the view structure contains the following elements mat: the 3 x 3
transformation matrix disp: the displacement vector. transformation from
tan-plane coordinates xtp to disk coordinates xd: xd = view.mat # xtp +
view.disp b: the b angle (degrees) p: the p angle (degrees) rad: apparent
solar radius (arcseconds)

Calling Sequence:
new_view = solar_rotate_view(view, time)

Inputs:
view = view the old view

4.1. TOP LEVEL ROUTINES

53

time time (in seconds)

Keyword Parameters:
to = date if set advance the view to a date specified by the string
date from view.date

rad=rad this new radius will be used rather thant the one in view.
this permits a change in perspective as between SOHO and an
Earth-orbiting satellite

b0=b0 this new b0 will be used rather thant the one in view. this
permits a change in perspective as between SOHO and an
Earth-orbiting satellite

shift=[dz,dy] shift the view by a [dx,dy] arcseconds. this permits
co-alignment

sum_graph
draw the domain graph and null graph for a set of poles, nulls and separators

Calling Sequence:
sum_graph, pls, nls, spr, [dm |

Inputs:
psl the poles structure

nls an array of null structures

spr an array of separators. spr.anull and spr.bnull are unsed to
index the nls connected by each separator. this is used to
generate the domain matrix if it is not passed in separately

Optional Inputs:
dm the domain matrix

Keyword Parameters:
title=title a title for the top of the plot

noorphans if set the null graph will omit nulls w/o separators.

leaf if keyword is set, and spr is present, use the slower do-
main_matrix algorithm which finds leaf domains. from nulls
w/ unbroken fans.

tan_plane2disk
translate a set of poles from the tangent plane to disk coordinates (arc-
seconds from disk center). the transoforamtion is specified in the struc-
ture view. returns a new viewing transformation which does the composite
transformation.

Calling Sequence:
new_view = tan_plane2disk(pls, view)

4.1. TOP LEVEL ROUTINES

Inputs:
pls the poles. will be changed upon return

view the structure specifying the transformation

view_xform

returns a structure for viewing at a tangent plane. the origin of the tangent
plane is (lat, cmd), b angle and p angle will be given in degrees. the view
structure contains the following elements mat: the 3 x 3 transformation
matrix disp: the displacement vector. transformation from tan-plane coor-
dinates xtp to disk coordinates xd: xd = view.mat # xtp + view.disp b:
the b angle (degrees) p: the p angle (degrees) rad: apparent solar radius
(arcseconds) scale: the linear scale factor. date: a string containing the
date & time of the observation

Calling Sequence:
view = view_xform(lat, cmd)

Inputs:
lat - the latitude cmd - the longitude

Keyword Parameters:
rad = rad radius of disk [default = 925 arcsec |

b = b the b-angle (deg) for heliographic coods. [default = 0 |

p = p position angle (deg) for heliographic coods. | default=0]
degrees - if set lat & cmd are taken to be in degrees date =
date_str - the string containg date & time

voronoi_pls
a graph of the voronoi tesselation formed by a set of poles

Calling Sequence:
voronoi_pls, pls

Keyword Parameters:
fill if set the positive regions will be filled using the default line-fill
pattern.

write_pns
output a file containing poles, nulls & separators

Calling Sequence:
write_pls, file_name, pls [, nls [, sepr |]

Inputs:
file_name string the name of the file to be created. file name =
’-> means write to std out

4.1. TOP LEVEL ROUTINES

55

pls the structure containing all poles.
nls array of structures containing the nulls

sepr float array (3, n) contaning the separators

Keyword Parameters:
view = view the viewing transformation.

append if set the information is added to the end of the file, and
can be read using the multi option of rd_pns

dm=dm the domain matrix

xadd_nulls

put up a window displaying poles and nulls (and possibly gamma lines),
and add new potential nulls.

Calling Sequence:
xadd_nulls, pls, nls

Inputs:
pls the list of poles

nls the null array. will be changed on output.

Keyword Parameters:
z=z put the initial guess at his level [default: z=0]

view=view a viewing transformation

xselect_fl

on a window showing poles etc. use the mouse to select field lines at various
heights.

Calling Sequence:
xselect_fl, pls

Inputs:
pls (optional) the list of poles

Keyword Parameters:

20 = [zlist | the values of z to use for the possible field lines.
default is [10,20,30,40]. one field line will be integrated for
each height.

view=view nulls are displayed using viewing trasnform view.

quiet if set the lines are plotted w/o listing the initial points.

xselect_null

put up a window displaying poles and nulls (and possibly gamma lines),
and select a subset of the nulls with the cursor. return only that subset.

4.2. LOWER LEVEL ROUTINES

56

Calling Sequence:
new_nulls = xselect_nulls(nls [, pls |)

Inputs:
nls the complete list of nulls (from which to select

pls (optional) the list of poles

Keyword Parameters:
gamma draw the gamma lines (spines)

over nulls are already displayed
omit rather than selecting nulls to include, select nulls to omit

view=view nulls are displayed using viewing trasnform view.

4.2 Lower Level Routines

advance_dif_rot
advance cmd according to differential rotation law \[\Omega = a + b
\sin"2(lat) \] a = 14.552, b = -2.84 degrees per day (sidereal)

Calling Sequence:
advance_diff_rot, lc, time

Inputs:
lc [lat, cmd | in radians unless degree flag is set

time time (in seconds)
KEYWORD PARAMETRS

degree if set the lat and cmd are interpretted in degrees (default
is radians)

asym_fl_ map
given a point at or beyond the asymptotic field limit —rl— ; pls.rmax,
return the point at the same radius which the asymptotic field maps to.
use the multi-pole expansion in pls. if the field line does not return then
closes = 0 upon return

Calling Sequence:
r2 = asym-_fl_map(pls, rl, closes=closes)

Keyword Parameters:
closes - set to 0 if the field does not close

avg_bp

. 7.
return B’

4.2. LOWER LEVEL ROUTINES

Calling Sequence:
ab = avg_bp(pls, fl)

calc_sepr_info
calculate the properties of each separator and add it to the spr structure.
if there are multiple separators do all of them.

Calling Sequence:
calc_sepr_info, pls, nulls, sepr

clip_fl
clip a field line to fit in 3d window

Calling Sequence:
fl = clipfl(f1)

closest_pole
return the index of the pole closest to the point x

Calling Sequence:
i = closest_pole(pls, x)

create_null

locate a null-point, given an initial guess. return a null structure null:
null.x - float array(3) the x,y,z coordinares of the null null.b - float —B(x)—
null.lam - float array(3) the eigenvalues of bprime (sorted) null.e0 - float
array (3) the spine direction null.el - float array(3) one of the span direcitons
null.e2 - float array(3) other spine direction null.type - character, either A’
or 'B’ null.char - character, 'P’ (prone), U’ (upright), 'C’ (coronal) of "M’
(mirror) null.ends - int array(2) the indices of charges at ends of the spines.
-1 for infinity. sorted in ascending order null.label - string giving the name
of the null null.theta0 - float the angle begining the circle on the plane.
after that circle increases by !pi

Calling Sequence:
null = create_null(pls, x) KEYWORD: noend - if set the spines
will not be traced

create_pls

create a blank poles structure, with np poles. pls.x - float array (np) of
x-locations pls.y - float array (np) of y-locations pls.z - float array (np) of
z-locations pls.q - float array (np) of charges of the poles pls.phi - float array
(np) of fluxes = 2*Ipi*pls.q pls.lab - string array (np) of labels pls.rmax -
float — characterisitic maximum distance pls.bmax - float — characterisitic
maximum field strength pls.drmax - float — characterisitic small distance
pls.coc - float array (3) is the center-of-(unsigned)charge pls.mpole - float
array with the monopole moment of set of poles pls.dpole - float array (3)
with the dipole moment of set of poles relative to the COC

4.2. LOWER LEVEL ROUTINES

58

Calling Sequence:
pls = create_pls(np)

create_spr

create a blank separator structure spr structure: spr.anull - (int) index of
the A-type null spr.bnull - (int) index of the B-type null spr.atheta - (float)
angle from the A-null spr.btheta - (float) angle fromt he B-null spr.poles -
(int array 4) list of poles ++— spr.label - (string) the label for the separator
fields filled in by spr_info spr.psi - the flux enclosed between separator and
z=0 spr.len - the length of the separator spr.zmax - maximum height of
separator spr.i0 - the characteristic current

Calling Sequence:
spr = create_spr([array |)

Inputs:
array (optional) the 4-element float array used in v1.0. this will
be used to fill in anull, bnull, atheta and btheta fields of struc-
ture

eval_a
at a point, x(0:2) evaluate the vector potential due to the set of poles given
by pls. for a point charge at the origin the vector potential is 1 - cos(th) (
1-z/r)A= -phi" = —— 2" Xrrsin(th) x"2 + y"2

Calling Sequence:
a = eval_a(pls, x)

eval b
at a point, x(0:2) evaluate the magnetic field due to the set of poles given
by pls

Calling Sequence:
b = eval_b(pls, x)

eval_b2p
at a point, x(0:2) evaluate the 2nd derivative tensor of the magnetic field
due to the set of poles given by pls d"2 B.i d"3 d(i,jk) = —— = -
chi(x) dxj dx_k dxi dxj dxk

Calling Sequence:
b = eval_b2p(pls, x)

eval_bprime
at a point, x(0:2) evaluate the derivative matrix of the magnetic field due
to the set of poles given by pls

4.2. LOWER LEVEL ROUTINES

59

Calling Sequence:
b = eval_b(pls, x)

eval z
at a point, x(0:2) evaluate the Auxilliary field Z(x) s.t. curl(Z) = A the
vector potential. for a point charge at the origin the vector potential is 1
-cos(th) (1-2z/r) A= phi® = ———— 2" X rrsin(th) x"2 +
y'21-cos(th)rz-r"22" Z=—— theta” = ——— sin(th) —r—(
—1—+4z)

Calling Sequence:
z = evalz(pls, x)

find_null
Newton-Raphson to find a null, given a guess. Return the converged null
in place of the guess

Calling Sequence:
find_null, pls, x

Keyword Parameters:
twod - restricts search to x,y plane stat - return the status of
the search. stat=0 if failed

fl_from_point
return a single field line, traced from from point x0. default is to plot in
both directions.

Calling Sequence:
fl = fl_from_point(pls, x0)

Keyword Parameters:
max_segs set to the maximum number of segments

seg_size number of integration steps per segment [10]
dir if set to +1 ot -1 only that direction will be traced

fl_intgrt
integrate the field line from initial point x0 until termination by one of
several criteria

Calling Sequence:
done = fl_intgrt(pls, x0)

Inputs:
pls - the structure of poles x0 - the initial point for the field
line will be change on return
done has the following value 0 = failure 1 = len_max is ex-
ceeded 2 = cang_min exceeded 3 = bmax exceeded 4 = plane
crossed 5 = dist_max exeeded 6 = rad_max exeeded

4.2. LOWER LEVEL ROUTINES

60

Keyword Parameters:

RESULT dir - trace in direction dir (default is +1.0) max_step
- the maximum integration step to take len_max - maxi-
mum integrated distance of line dist_max - maximum dis-
tance from x0 step_max - maximum size of a step (default
= pls.drmax) max_steps - maximum number of steps (default
= 1000) cang-min - the minimum cosine of the normal angle
cross = cpv = float array(3,2) = [[xctr |, [dir]] if set end the
tracing when the field line crosses the plane defined by point
xctr and direction vector dir

fl_view_xform
given a field line perfom the specified viewing transformation. the field line
is returned transformed.

Calling Sequence:
fl_view_xform, fl, view

gamma_line
return one of the gamma lines from null, including its two ends

Calling Sequence:
fl = gamma line(pls, null)

init_sepx_line

begin a field line at position theta along the given null. locally the field
has the structure B = lam1 (r.el) el + lam2 (r.e2) e2 where —laml— j
—lam2— are the eigenvalues of bprime the field lines can then be defined
in terms of a = laml/lam2, so that 0 j= a j= 1 r = (cos(th))"a rho"a
el + sin(th) rho e2 where rho increases outward from a field line & is the
largest physical distance at an d r / d rho = rho"{-1} [a (r.el) el + (r.el)
e2] = (rholam2)"{-1} B

Calling Sequence:
x = init_spex_line, pls, null, theta

is_pole
return the index of the pole identified by label lab if no pole matches return
-1. print, pls.lab(is_pole(pls, 'N01’)) NO1

Calling Sequence:
i = is_pole(pls, lab)

line_piece
return a section of a field line, with a fixed number of points, uniformly
distributed. input and output are float arrays f1(3,*)

4.2. LOWER LEVEL ROUTINES

61

Calling Sequence:
fl = line_piece(ofl, zmin=zmin, n=n) ARGUUMENTS: ofl - the
old field line

Keyword Parameters:
zmin - the lowest altitude for the field line n - the number of
points in the field line ref = ref. fi non-zero the points will be
exponentially concentrated at the ends with maximum ratio
ref (; 1.0)

null_scan
given a single null compile a list of all charge-pairs (by index) contacted by
the null. if the keyword th is set, it will be returned with a list of all angles
theta bracketing the separator.;+

Calling Sequence:
inds = null_scan(pls, null)

Inputs:
pls - the structure of poles null - a single null structure

Keyword Parameters:
twopi - scan over all 2pi radians, rather than simply pi nth
- the number of segments to check ref_ max - the number of
times to refine a boundary [5]

Outputs:
inds - intarr(2,n) lists the pairs of poles bracketed by separa-
tors.

pole_of_theta
return the pole index found from integrating away from a given null at angle
theta. If the trace extends past the afl radius continue using asym_fl_map.

Calling Sequence:
i = pole_of_theta(pls, null, th_val)

Inputs:
pls the poles structure

null a single null structure

th_val the angle from which to sent a fan field line from the null
point.

random _field _line
return a single field line, selected at random. probability is based on flux.

4.2. LOWER LEVEL ROUTINES

Calling Sequence:
fl = random _field line(pls)

relabel nulls
define the null labels according to a given scheme. sequential: nls(5).lab =
"A06’ or 'B06’ polar: nls(5).lab = "P03-P15’ etc.

Calling Sequence:
relabel nulls, nls, [pls |, [keywords |

Keyword Parameters:
sequential use sequenctial labeling [default |

polar use polar labeling

sort put the nulls into an order based on spine sources

relabel _poles
assign pole labels in sequential order pls.lab(5) = "P06’ or 'N06’

Calling Sequence:
relabel_poles, pls,

Keyword Parameters:
sort if set the poles are sorted in decreasing order of magnetitude
order = order - if initially set to an array the array will be
returned with values in the new order.

sepr_line
return a separator field line from nullA - nullB. defined by the angle thA
and thB

Calling Sequence:
fl = sepr_line(pls, nulls, sepr)

sepr_plane
return a point, and a triad of vectors defining a plane normal to the sep-
arator. this is returned as a 3 X 4 float array. result(*,0) is the origin of
the new coordinate system. result(*,1) and result(*,2) are vectors in the
normal plane and result(*,2) is the normal vector (parallel to B).

Calling Sequence:
result = sepr_plane(pls, nulls, sepr)

sepx_line
return a separatix field line from null along direction theta

Calling Sequence:
fl = sepx_line(pls, null, theta)

4.2. LOWER LEVEL ROUTINES

63

Keyword Parameters:
max_segs=max_segs - the maximum number of segments to
use

tan_plane_matrix
a 3 x 3 matrix translating neighbors of the point (lat, cmd) on the disk,
to a tangent plane.

Calling Sequence:
tpmat = tan_plane matrix(lat, cmd). matrix takes a tangent
vector in disk coordinates [vx, vy, vz | = tmat # [vw, vn, vr |

Inputs:
lat - latitude of point cmd - the longitude

Keyword Parameters:
b = b the b-angle (deg) for heliographic coods. [default=0 |

p = p position angle (deg) for heliographic coods. [default=0]
degrees; if set the lat & cmd are in degrees (default is radians)

update_nulls
given a set of poles and a set of nulls from an related set of poles update
the nulls. use their location as initial guesses.

Calling Sequence:
new_nulls = update_nulls(pls, nls)

view2time
from a single viewing trasnformation or an array return a float (or array
of floats) denoting the time from some reference point. unless otherwise
specified the time will be in hours and the reference time will be the begining
of the day of the first element.

Calling Sequence:
time = view2time(view)

Inputs:
view a view-xform structure, or array of structures.

Keyword Parameters:
days if set the time is converted to decimal days

from=datestr a string giving the reference tim

Outputs:
time a float or float array

Bibliography

[1]

2]

C. Beveridge and D. W. Longcope. On three-dimensional magnetic skeleton
elements due to discrete flux sources. Solar Phys., 227:193-206, 2005.

D. W. Longcope. Topology and current ribbons: A model for current, recon-
nection and flaring in a complex, evolving corona. Solar Phys., 169:91-121,
1996.

D. W. Longcope. Separator current sheets: Generic features in minimum-
energy magnetic fields subject to flux constraints. Phys. Plasmas, 8:5277—
5290, 2001.

D. W. Longcope and I. Klapper. A general theory of connectivity and current
sheets in coronal magnetic fields. ApJ, 579:468-481, 2002.

D. W. Longcope and T. Magara. A comparison of the minimum current
corona to a magnetohydrodynamic simulation of quasi-static coronal evolu-
tion. ApJ, 608:1106-1123, 2004.

