
Notes on Transmission Lines
(DWL 4/10/01, significantly revised 4/2/19, and then 4/16/20)

Wave equations occur in many areas of physics but electromagnetic waves are probably the most
widely known. The three-dimensional wave equation which describes electromagnetic radiation in
vacuum is quite formidable. It is worthwhile becoming acquainted with wave equations in one
dimension before tackling the three-dimensional variety.

Electrical signals propagating along a wire obey a one-dimensional wave equation. These notes
derive the equations from the underlying physics, also called transmission line theory, and present
the basic properties of a wave equation in this context. As an additional benefit, several results
from transmission line theory may prove useful to anyone needing to connect computer cables or
work with electronics in the lab.

1.1 The transmission line

A particularly simple kind of transmission line is the co-axial cable composed of two conductors.
We will consider a perfectly straight co-axial conductor whose inner conductor is a cylinder of outer
radius a centered on the z-axis. This is surrounded by an outer shielding conductor whose inner
radius is b and also centered on the z axis — i.e. co-axial. Both conductors will be assumed to
be perfectly conducting (σ = ∞); this theoretical construct is known as a lossless transmission

line. (A section below relaxes this treatment to include conductors with finite resistivity — a

lossy transmission line.) The entire gap is filled with a material with linear electric and magnetic
properties, described by permittivity ǫ and permeability µ. A general signal on the co-axial cable
consists of a current I(z, t) (Amps) and a line-charge λ(z, t) (Coulombs per meter) on the inner
conductor. We will assume that the outer conductor carries an equal and opposite current and
charge. Because we are assuming perfect conductors the current density and charge density will be
distributed only over the surfaces of each conductor. I(z, t) and λ(z, t) are the integrals over these
surface densities.

Electrostatic field

We compute the electric field within the gap as the sum of an electrostatic and an inductive
contribution

E(x, t) = Es(x, t) + Ei(x, t) . (1)

The electrostatic field arises only from free and bound surface charges on the inner conductor and
inner surface of the dielectric. Provided λ(z, t) varies over axial length ∆z ≫ b, the field will be
primarily radial and we may write the electric displacement

D(s, z, t) ≃ λ(z, t)

2πρ
ρ̂ . (2)

The electrostatic field is therefore

Es(s, z, t) =
D

ǫ
≃ λ(z, t)

2πǫρ
ρ̂ . (3)

Since this is an electrostatic field, it can be written as the gradient of a scalar potential

Φ(ρ, z, t) ≡ −
∫

Es · dl = −
∫ ρ

b
Es,ρ(ρ

′, z, t) dρ′ =
ln(b/ρ)

2πǫ
λ(z, t) , (4)
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where the potential of the outer conductor has been taken to be zero. Because Φ depends on z
there is also an axial component to the electrostatic field

Es,z = − ∂Φ

∂z
= − ln(b/ρ)

2πǫ

∂λ

∂z
, (5)

which appears to be missing from the expression (3). The reason for this discrepancy is that the
ratio of the two is very small
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≪ 1 , (6)

where we define the length scale of axial variation as

∆z ∼
∣
∣
∣
∣

1

λ

∂λ

∂z

∣
∣
∣
∣

−1

. (7)

We started off assuming this length scale to be much larger than b, and therefore much larger
than all values of ρ.1 Thus the purely radial electrostatic field in eq. (3) is the leading order
approximation, and we used it to define the potential, in eq. (4). It is from that expression that
we derive the smaller axial component in eq. (5).

The voltage at the inner conductor is found by evaluating the potential at ρ = a there

V (z, t) = Φ(a, z, t) =
ln(b/a)

2πǫ
λ(z, t) . (8)

Since we have taken Φ = 0 at the outer conductor, this is the voltage drop between the inner and
outer conductor. The voltage is evidently proportional to the charge per length on that conductor
so

λ(z, t) =
2πǫ

ln(b/a)
︸ ︷︷ ︸

C

V (z, t) , (9)

where the constant of proportionality is the capacitance per unit length2 of the co-axial cable

C =
2πǫ

ln(b/a)
. (10)

This quantity will play a central role in our computations below. Had we used conductors of any
geometry other than co-axial cylinders, we would be able (possibly with difficulty) to compute
the capacitance between them. Provided they were invariant in z, the total capacitance would be
proportional to total length, with a constant of proportionality C, the capacitance per unit length.

1This is equivalent to restricting ourselves to frequencies much smaller than the inverse light-transit time across
the cable’s diameter. For cable diameters of order 1 cm this means restricting ourselves to frequencies below a few
GHz. At higher frequencies the system must be treated as a wave-guide rather than a transmission line.

2Obviously if the ratio of charge to voltage is capacitance then the ratio of charge per length to voltage is
capacitance per length. Its units are, naturally, Farads per meters, which happens to be same as the units of
permittivity: ǫ0 and ǫ.
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Inductive electric field

Using similar arguments about the scale of axial variations of the current ∆z ≫ b, the magnetic
field can be seen to be primarily in the φ̂ direction, and may be found from Ampère’s law

B(ρ, z, t) ≃ µI(z, t)

2πρ
φ̂ , (11)

where have used the fact that B = µH in the linear medium. This magnetic field can be expressed
using a purely axial vector potential

A(ρ, z, t) = Az(ρ, z, t) ẑ , (12)

by taking the curl

B = ∇×A = ∇Az × ẑ = − ∂Az

∂ρ
φ̂ . (13)

Equating this with eq. (11) allows us to obtain the vector potential explicitly

Az(ρ, z, t) = −
ρ∫

b

Bφ(ρ
′, z, t) dρ′ = −

ρ∫

b

µI(z, t) dρ′

2πρ′
=

µI(z, t)

2π
ln(b/ρ) , (14)

where we have used our gauge freedom to set Az = 0 on the outer conductor (but we see below
that this is necessary to be consistant with our choice of Φ = 0 there).

At this point we will take brief tangent to rephrase the result in terms of an inductance per unit
length of the co-axial cable. To do so we introduce an Ampèrian loop, AL, shown in fig. 1. The
loop crosses from the inner to outer conductor but extends only a short axial distance δz ≪ ∆z
the length over which I(z, t) varies. The flux through that small loop is

δF =

∮

AL

A · dl =

z+δz∫

z

[

Az(a, z
′, t) − Az(b, z

′, t)
]

dz′ ≃ Az(a, z, t) δz , (15)

after noting that Az = 0 at ρ = b, and using the fact that Az(a, z
′, t) is approximately constant

over the short distance. The result is that the flux per unit axial length is

δF

δz
= Az(a, z, t) =

µ

2π
ln(b/ρ)

︸ ︷︷ ︸

L

I(z, t) , (16)

where we recognize the constant of proportionality between current and flux-per-length, as induc-
tance per length

L =
µ

2π
ln(b/a) . (17)

Comparing this expression for inductance per length to the capacitance per length in eq. (10)
reveals the relation

L =
µǫ

C , (18)

for a co-axial cable. This turns out to be true for two axially-invariant conductors regardless of their
cross sectional shapes — not just for co-axial cylinders. It is not trivial to show, but follows from
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Figure 1: The Ampèrian loop, AL, used to compute inductance per unit length.

the fact that Φ and Az both satisfy Laplace’s equation between the conductors, and that λ and I
arise from integrals of their respective normal derivatives over the conductor surface. Problem 5.29
in Jackson asks for these steps to be filled in explicitly — have fun.

The final step in this analysis is to use Az to compute the inductive electric field between the
conductors

Ei,z(ρ, z, t) = − ∂Az

∂t
. (19)

This must be added to the axial component of the electrostatic field, found in eq. (5), to obtain
the full electric field

Ez(ρ, z, t) = − ∂Φ

∂z
− ∂Az

∂t
. (20)

Evaluating this at ρ = a and ρ = b gives the tangential electric field outside each conductor. Since
both are perfect conductors the field must vanish at those points. Since we have chosen both Φ = 0
and Az = 0 at the outer boundary, ρ = b, we automatically satisfy Ez = 0 there. To satisfy the
condition on the inner conductor we demand

∂Φ(a, z, t)

∂z
= − ∂Az(a, z, t)

∂t
. (21)

Using eqs. (8) and (16) to replace Φ(a, z, t), and Az(a, z, t), gives

∂V

∂z
= − L ∂I

∂t
. (22)

This gives one fundamental relation between the voltage and current. The relation reveals that
even though the inner conductor is a perfect conductor, it is not an equipotential: i.e. ∂V/∂z 6= 0.
Conductors are equipotential in electrostatics because there is no inductive contribution to the
electric field. When there is an inductive contribution then it must be canceled by a non-vanishing
electrostatic field at the conductor.

To obtain a second relation between the voltage and current we now introduce the continuity
of charge. A variation in current along the inner conduct, i.e. ∂I/∂z 6= 0, results in a change in the
charge density there. Conservation of charge demands that

∂λ

∂t
= − ∂I

∂z
. (23)

Using eq. (9) to write λ = CV we obtain the explicit relation

C ∂V

∂t
= − ∂I

∂z
. (24)
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1.2 The wave equation

Equations (22) and (24) constitute two first-order partial differential equations (PDEs) relating the
evolutions of current and voltage distributions on the inner conductor of our co-axial cable. The
pair of equations, referred to collectively as telegrapher’s equations, are traditionally written to give
time-dependences explicitly

∂I

∂t
= − 1

L
∂V

∂z
, (25)

∂V

∂t
= − 1

C
∂I

∂z
. (26)

The telegrapher’s equations may be combined into a single second-order PDE for a single
variable. One way to do this is differentiating (25) by z, (26) by t and eliminating the cross
derivative ∂2I/∂z∂t. The resulting equation

∂2V

∂t2
=

1

LC
∂2V

∂z2
= c2

∂2V

∂z2
, (27)

is the one-dimensional wave equation with wave-speed

c =
1√
LC

=
1√
ǫµ

, (28)

after making use of the general relation given by eq. (18). This is the speed of light in the linear
medium. Evidently, voltage signals propagate along a co-axial cable, or any other transmission
line, at the speed of light.

The general solution to (27) can be written as the sum of rightward and leftward propagating
wave-forms

V (z, t) = f(t− z/c) + g(t+ z/c) , (29)

where f(u) and g(v) are arbitrary functions of a single variable (see fig. 2). To verify that expression
(29) solves the wave equation, (27), we must work out the partial derivatives using the chain rule

∂V

∂t
=

df

du

∂u

∂t
+

dg

dv

∂v

∂t

= f ′(t− z/c) + g′(t+ z/c)

∂V

∂z
=

df

du

∂u

∂z
+

dg

dv

∂v

∂z

= −c−1 f ′(t− z/c) + c−1 g′(t+ z/c)

where f ′(u) ≡ df/du etc. Repeating this step gives the second derivatives

∂2V

∂t2
= f ′′(t− z/c) + g′′(t+ z/c)

∂2V

∂z2
= c−2 f ′′(t− z/c) + c−2 g′′(t+ z/c) ,
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and equation (27) can be seen to be satisfied regardless of how functions f(u) and g(v) are chosen.

t=0

z

t=T

z

V = f(t-z/c)

I = f(t-z/c)/Z

cT cT

I = -g(t+z/c)/Z

V = g(t+z/c)

I(z,3T)

V(z,3T)

t=3T

z

3cT 3cT

t=5T

5cT 5cT

Figure 2: Rightward and leftward propagating pulses on a transmission line. The potential V (z, t)
and current I(z, t) are shown at times t = 0, T, 3T and 5T .

Consider a case where one end of the cable, at z = 0, is connected to a transmitter which
generates a voltage signal

V (z=0, t) = S(t) . (30)

This can be applied as a boundary condition on eq. (29) to yield a full solution

V (z, t) = S(t− z/c) , (31)

which is purely rightward propagating. A receiver located at position z will observe a voltage on
the line which is the same as that at the generator but delayed3 by time z/c; this is the signal
transit time.

The current can be found by substituting the general solution (29) into eq. (25)

∂I

∂t
= − 1

L
∂V

∂z
= − 1

cL [−f ′(t− z/c) + g′(z + ct) ] (32)

3The voltage applied at t = 0, namely S(0) is observed by the receiver at t = z/c since that is when the argument
of (31) is zero.
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=
1

cL
∂

∂t
[ f(t− z/c) − g(t+ z/c) ] . (33)

In the last step, the derivatives of f and g have been changed to partial derivatives with respect to
time. This permits the equation to be easily solved for current

I(z, t) =
1

cL [ f(t− z/c) − g(t+ z/c) ] = Z−1 [ f(t− z/c) − g(t+ z/c) ] , (34)

where the impedance of the transmission line

Z = cL =

√

L
C , (35)

has been introduced to simplify notation. Note that the current also takes the form of rightward
and leftward traveling waveforms. Moreover, the shapes of the current waveforms exactly match
those of the voltage: namely f(u) and g(v). In a rightward waveform the voltage and currents have
the same signs while in a leftward waveform they have opposite signs.

For a purely rightward (top) or leftward (bottom) propagating wave the voltage and current
are related by

V = ± Z I , (36)

where the impedance Z apparently has units of resistance. This simple relation does not hold in
general; a transmission line is not a resistor.

Impedance

We claimed above, with a brief nod toward a justification, that the product LC = ǫµ is independent
of the geometry of the conductors. The ratio of the two will, however, depend on geometry, and so
will the impedance. Using expressions (10) and (17) yields the impedance of a co-axial cable

Z =

√

L
C =

ln(b/a)

2π

√
µ

ǫ
. (37)

The dimensional piece of the impedance is
√

µ/ǫ/2π has units of resistance. Its value in vacuum
√

µ0/ǫ0/2π = 60 Ohms, is determined by universal constants, and sometimes called the impedance

of vacuum.4 Typically µ ≃ µ0 and ǫ > ǫ0 so the wave speed is less than c, and the impedance is
smaller than its value would be with a vacuum.

The factor ln(b/a) arises in eq. (37) from the co-axial geometry. It could have been quickly
found by computing either C or L, for co-axial conductors. For a transmission line with any other
shape one must repeat that step to find its impedance. One other common example is a pair of
identical wires, each of radius a and separated by center-to-center distance d. This is a variant
of Jackson’s problem 5.26, with current on the outside rather than uniformly distributed. The
inductance per unit length is

Lwires =
µ

π
ln(d/a) . (38)

4That vacuum has finite impedance, while it clearly has infinite resistance, reminds us once more than impedance
and resistance are different and independent things — they just happen to have the same units.
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Multiplying this by c = 1/
√
ǫµ gives the impedance of the parallel wires

Zwires = cLwires =
ln(d/a)

π

√
µ

ǫ
. (39)

This resembles the impedance of a co-axial cable, i.e. eq. (37), with d = b, but is a factor of two
larger. This is basically the penalty for filling all space with electric and magnetic fields, rather
than just an annular gap.

50 Ohm impedance is a common standard for co-axial cables. If such a co-axial cable had a
vacuum gap the outer radius would be b = 2.3 a. One sample of 50Ω co-axial cable actually has
a wave speed 0.80 c, which means that the permittivity in the gap is ǫ = (0.80)−2 ǫ0 (µ ≃ µ0 in
non-ferromagnetic materials). From this we can infer the outer gap is b = 2.8 a.

1.3 Boundary conditions

Resistive terminations

Consider a transmission line of length ℓ at the end of which, i.e. at z = ℓ, the inner and outer
conductors are connected together by a resistor R. This imposes the condition

V (ℓ, t) = RI(ℓ, t) , (40)

for all time t. Substituting both general solutions, (29) and (34), we find

f(t− ℓ/c) + g(t+ ℓ/c) =
R

Z
[ f(t− ℓ/c) − g(t+ ℓ/c) ] . (41)

Solving this for the reflected wave g gives the relation

g(t+ ℓ/c) =
R− Z

R+ Z
f(t− ℓ/c) . (42)

It is possible to eliminate all reflections if the terminating resistor is chosen to exactly match the
impedance Z of the transmission line. A larger resistance will result in a reflection without sign
flip, a smaller resistance will result in a reflection with a sign flip. The cases of open and shorted
ends can be easily recovered by setting R = ∞ and R = 0 respectively in expression (42).

It is useful to find a general expression for the function g(v). To do this we equate the argument
of eq. (42) with the variable v = t+ ℓ/c. If we invert this relation we find t = v − ℓ/c. Using that
to eliminate t from the argument of f yields

g(v) =
R− Z

R+ Z
f(v − 2ℓ/c) . (43)

This is what is used in the general solution, eq. (29) to get

V (z, t) = f(t− z/c) + g(t+ z/c
︸ ︷︷ ︸

v

) = f(t− z/c) +
R− Z

R+ Z
f
(

t− 2ℓ− z

c

)

. (44)

This shows that position z sees a direct signal delayed by z/c, and then a reflected signal delayed
by (2ℓ− z)/c. Since z < ℓ within the line, the reflection will always arrive after the direct signal —
naturally. The reflection will reach the origin, z = 0, delayed by a full round-trip: 2ℓ/c.
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1.4 Connecting two cables

Consider the case of two cables with different impedances connected together. One co-axial cable
with impedance Z1 and wave speed c1 stretches from z = 0 to z = ℓ where it is connected to a
cable with impedance Z2 and wave speed c2. A rightward signal f1(t− z/c1) reaching this juncture
will give rise to a rightward signal in cable 2, which we denote f2(t− z/c2), and a reflected leftward
signal on cable 1, g1(t + z/c1). The “connection” consists of electrical contact between both the
inner and outer conductors of the cables. The voltage across inner and outer conductors must
match across the juncture

V (ℓ− 0, t) = f1(t− ℓ/c1) + g1(t+ ℓ/c1) = f2(t− ℓ/c2) = V (ℓ+ 0, t) . (45)

The currents must also match, since no charge can disappear into the connection

Z−1
1 [ f1(t− ℓ/c1)− g1(t+ ℓ/c1) ] = Z−1

2 f2(t− ℓ/c2) . (46)

Eliminating f2 from this pair of equations we find the reflected wave

g1(t+ ℓ/c1) =
Z2 − Z1

Z2 + Z1
f1(t− ℓ/c1) , (47)

appears exactly as if it had reflected from a lumped resistance R = Z2. Replacing this in (45)
yields the transmitted wave

f2(t− ℓ/c2) =
2Z2

Z2 + Z1
f1(t− ℓ/c1) . (48)

The waveform is transmitted to cable 2 multiplied by a factor ranging from zero to two; it never
flips sign. It is notable that any change in wave speed between the cables plays no role in reelection
or transmission.

1.5 An illustrative example

As an example consider a cable with impedance Z terminated with a resistor R which, for con-
creteness, we take to be R < Z. At t = 0 the cable’s left end is connected to a battery with voltage
V0. This causes a step-function pulse to travel rightward, as illustrated in fig. 3. The current is
also a step function with current

I0 =
V0

Z
. (49)

This is the current flowing across the switch for some time after it is closed. Note that it is unrelated
to the value of the resistor. This is natural, since the resistor is some distance away and the battery
cannot yet know about it.

When the pulse reaches the resistor, at t = c/ℓ, it produces a reflected pulse. The voltage in
this pulse is

∆V1 =
R− Z

Z +R
V0 , (50)

as required by eq. (42). Since R < Z, the reflected voltage is negative, ∆V1 < 0, and thus reduces
the total voltage (see fig. 3). Since it is a leftward wave it contributes a positive current

∆I1 = − ∆V1

Z
=

Z −R

Z +R

V0

Z
= α I0 . (51)
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Figure 3: A battery is connected to a transmission line with resistor R < Z. Initially a voltage and
current pulse is transmitted rightward. A reflection from the resistor propagates leftward. This is
then reflected rightward by the battery.

where α = (Z −R)/(Z +R). This increases the current in order to satisfy the condition

V0 +∆V1 = R( I0 +∆I1) , (52)

at z = ℓ.
When the leftward reflection reaches the origin, at time t1 = 2ℓ/c, a new rightward reflection

is then generated. This is needed because the battery must maintain V = V0 at z = 0 — this is
the one and only job of a battery. The reflected voltage pulse will be equal and opposite to the
incident voltage in order to preserve V = V0. The reflected current is therefor positive — again.
The current through the switch will then be

I1 = I0 + 2∆I1 = I0 + 2αI0 , t1 < t < t2 = 2t1 . (53)

This is the result after one round-trip reflection, and it will persist until a new reflection arrives at
t2 = 4ℓ/c.

This new rightward reflection will suffer another reflection at the resistor generating

∆I2 = α∆I1 = α2 I0 ; (54)

all reflections have positive current and thus cause the net current to monotonically increase. The
voltage reflections, on the other hand, are positive going rightward and negative going leftward.
They cause the voltage to oscillate. The reflections from the left are always such that they restore
V = V0 at z = 0.
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It is evident how this procedure might be repeated to obtain the current at the switch after n
round-trip reflections

In =
[

1 + 2α + 2α2 + · · · + 2αn
]

I0 , tn < t < tn+1 , (55)

illustrated in fig. 4. Since α < 1 (except in the troubling case R = 0) the series converges to an
asymptotic current

I∞ =

[

1 + 2
∞∑

n=1

αn

]

I0 =

[

1 +
2α

1− α

]

I0 =
1 + α

1− α
I0 , (56)

after summing the geometric series. Introducing α = (Z − R)/(Z + R) yields simple form for the
factor

1 + α

1− α
=

(Z +R) + (Z −R)

(Z +R)− (Z −R)
=

Z

R
. (57)

The current therefore asymptotes to

I∞ =
1 + α

1− α
I0 =

Z

R
I0 =

Z

R

(
V0

Z

)

=
V0

R
. (58)

the value the resistor would draw if it were connected to the battery by two perfectly conducting
wires. Of course the transmission line is just that: two perfectly conducting wires.

The novel aspect seen in this example is that the current V0/R, is not achieved immediately upon
closing the switch. Instead it is approached asymptotically through repeated reflection between
battery and resistor as seen in fig. 4. This process seems like a stair-step rendering of the asymptotic
current ramp-up observed in a classic L-R circuit, shown as a dashed curve. In that case, the current
approaches its asymptotic value exponentially. The geometric progression we have found is, in fact,
similar to an exponential with time constant τ given the association

αn ∼ e−tn/τ , (59)

where tn = 2nℓ/c is the time taken for n round-trip reflections. Taking logarithms we find an
expression for the time constant

τ = − tn
n lnα

=
2ℓ

c ln(α−1)
. (60)

In the cases where R and Z have comparable magnitudes (but R < Z) then ln(α−1) will not be
very small and τ ∼ 2ℓ/c — it will take only a few transits for the current to approach is asymptote.

In the opposite case of extremely small resistance, R ≪ Z, each reflection will be very small,
I∞ ≫ I0, so it will take many to approach the asymptotic current. In this limit we expand

α−1 =
Z +R

Z −R
=

(

1 +
R

Z

) (

1− R

Z

)−1

≃ 1 +
2R

Z
+ · · · , (61)

and the very small logarithm

ln(α−1) ≃ ln

(

1 +
2R

Z
+ · · ·

)

≃ 2R

Z
. (62)
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Figure 4: The current in a transmission line with a resistive load R = Z/4 at z = ℓ and a voltage V0

applied to z = 0 at t = 0. The bottom plot shows current at z = 0 (blue) and z = ℓ (red) vs. time,
in units of transit-time ℓ/c. The black dashed curve is the current in an L-R circuit, asymptoting
to I∞ = 4V0/Z. The upper plots show the current I(z) at times during the first four half-transits,
with red and blue symbols at the appropriate ends, and a black arrow indicating the direction the
transition is propagating.

In this case the time constant becomes much larger

τ =
2ℓ

c ln(α−1)
≃ ℓZ

cR
=

ℓL
R

, (63)

after using Z = cL. Since L is the inductance per unit length, the product ℓL = L is the total

inductance of the entire transmission line. The time constant, τ = L/R, is exactly what is found
for a simple L-R circuit. It would seem that when R ≪ Z the transmission line behaves like an
inductor. The current rises gradually because of the inductance of the wire, but if observed closely
it does so in a stair-step manner.

We can use the result, eq. (63), to re-express the assumption as

R

Z
≃ ℓ/c

τ
LR

≪ 1 . (64)

The middle ratio says that the light-transit time across the transmission line is much smaller
than the L-R time-constant. If this is the case, the transmission line will behave like a simple
inductor; we call this a lumped circuit element, and it is what you studied in undergraduate electrical
circuits. The treatment breaks down when the lumped-circuit time constant, ie. τ = L/R, becomes
comparable to light-transit across the circuit. At that point it becomes necessary to account for
currents and voltages traveling from one part of the circuit to another — i.e. to use transmission
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line theory. Since you were typically thinking of circuits only a foot or less across, a lumped-circuit
approach is valid provided it is not operating at giga-Hertz frequencies.

While we had described the process for a resistance, R < Z, the same process can be applied
to the case R > Z. Indeed, the results above hold for both cases, although when R > Z the factor
α = (Z − R)/(Z + R) will be negative. Using this in eq. (53) gives I1 < I0. Following this logic
leads to I2 > I1, I3 < I2, etc. The asymptotic current I∞ < I0 is thus approached via oscillation,
rather than monotonically as in the original version (i.e. R < Z). This is a natural consequence of
the successive powers of a negative factor: αn. This power can still be expressed as αn = e−tn/τ ,
although the time constant is now complex. Using the reciprocal of epxression (60) results in the
complex value

1

τ
=

c

2ℓ
ln(α−1) =

c

2ℓ
ln

(
R+ Z

R− Z

)

± i
π c

2ℓ
, (65)

where the imaginary part is from ln(−1) = ± i π. The imaginary part of this leads to a complex
phase, e−t/τ ∝ e−ωt with angular frequency

ω =
π c

2ℓ
, (66)

meaning a period of 4ℓ/c. The reason for this is that the voltage pulse is inverted by the left
boundary (the voltage source at z = 0) but not by the restistive load on the right when R > Z.
It therefore takes two full transits before the pulse returns to its original sign, leadign to a period
4ℓ/c.

Since the real part of expression (65) is positive, current still approaches I∞ as t → ∞. In the
case of very great load resistance, R ≫ Z, we can expand this to obtain

1

τr
=

c

2ℓ
ln

(
R+ Z

R− Z

)

≃ cZ

ℓR
=

1

RℓC , (67)

which is the inverse of the RC time constant (the total capacitance of the transmission line is
C = ℓC). This decaying oscillation suggests that the loaded transmission line behaves line an LRC
circuit with the resistor and capacitor in parallel. The long time behavior of this simple circuit
is dominated by exponential decay at the longer of its time constants. This is τ ≃ L/R when,
R ≪

√

L/C, and is τ ≃ RC when R ≫
√

L/C. In the former case the decay is slow enough
(τ = L/R ≫ RC) that the capacitor behaves like an open circuit leaving an LR circuit with
its simple exponential decay. In the latter case, however, the decaying envelope oscillates at the
intermediate frequency 1/

√
LC. Both behaviors are found in the loaded transmission line, although

that exhibits oscillation at a frequency smaller by a factor 2/π than the circuit.

1.6 Circuit impedance

Classic lumped circuit analysis invokes impedance in a different, but related manner. If a particular
lumped circuit element carries current I(t) = I0e

−iωt, the voltage drop across it will be V (t) =
Z̃(ω)I0e

−iωt, where Z̃(ω) is its impedance. Resistors, capacitors, and indictors have impedances

Z̃R(ω) = R , Z̃C(ω) =
i

ωC
, Z̃L(ω) = − iωL , (68)

respectively. The circuit impedance for any combination of elements is found by combing their
impedances just as one combines resistances — simple addition for series combinations and adding
reciprocals to find the reciprocal impedance of a parallel combination.
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To compute the circuit impedance of a transmission line we consider one driven by a current
I(0, t) = I0e

−iωt at one end — the z = 0 end. The general solution to the wave equation with that
boundary condition is

I(z, t) = I0 cos(kz) e−iωt + Ã sin(kz) e−iωt , (69)

where k = ω/c and Ã is a constant. To find the voltage we use eq. (26)

∂V

∂t
= − 1

C
∂I

∂z
= ωZ [ I0 sin(kz) − Ã cos(kz)

]

e−iωt , (70)

after using the fact that 1/c C = cL = Z, the transmission line impedance (the tilde is used to
distinguish the circuit impedance from this one). This gives us a voltage

V (z, t) = iZ [ I0 sin(kz) − Ã cos(kz)
]

e−iωt . (71)

If the other end of this transmission line, z = ℓ, is connected to a load impedance Z̃ℓ then we
must have

V (ℓ, t) = iZ [ I0 sin(kℓ) − Ã cos(kℓ)
]

e−iωt

= Z̃ℓ I(ℓ, t) = Z̃ℓ[ I0 cos(kℓ) + Ã sin(kℓ)
]

e−iωt , (72)

This relation can be solved to find

Ã =

[

iZ tan(kℓ)− Z̃ℓ

Z̃ℓ tan(kℓ) + iZ

]

I0 . (73)

To finish we use eq. (71) to obtain the voltage at z = 0

V (0, t) = − iZ Ã e−iωt = Z̃(ω) I0 e
−iωt , (74)

given the circuit impedance of the load through the transmission line

Z̃(ω) = − iZ

[

iZ tan(kℓ)− Z̃ℓ

Z̃ℓ tan(kℓ) + iZ

]

= Z

[

Z tan(ωℓ/c) + iZ̃ℓ

Z̃ℓ tan(ωℓ/c) + iZ

]

. (75)

This is more complicated than the simple circuit elements in eq. (68). It does have has several
properties of note. If the transmission line is negligibly short, ωℓ/c → 0, then it does not effect
the combination and Z̃(ω) = Z̃ℓ. If the load impedance exactly matches the transmission line,
Z̃ℓ = Z, then the combination matches that value as well Z̃(ω) = Z = Z̃ℓ. This is notable, because
it appears that the transmission line plays no role, even though it may be very long.

Slightly more informative is the case, treated above, where Z̃ℓ ≪ Z. In that limit eq. (75)
becomes

Z̃(ω) ≃ − i Z tan(ωℓ/c) + Z̃ℓ sec
2(ωℓ/c) . (76)

In the limit of low frequency, ωℓ/c ≪ 1 this becomes

Z̃(ω) = − iω
Zℓ

c
+ Z̃ℓ = − iω ℓL + Z̃ℓ , (77)
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using L = Z/c. The final expression is the impedance of the load in series with an inductor ℓL.
This is exactly what we found in sec 1.5.

For the opposite case, Z̃ℓ ≪ Z, we expand the inverse

1

Z̃(ω)
=

1

Z

[

tan(ωℓ/c) + iZ/Z̃ℓ

i+ (Z/Z̃ℓ) tan(ωℓ/c)

]

≃ − i
tan(ωℓ/c)

Z
+

sec2(ωℓ/c)

Z̃ℓ

. (78)

Taking the low-frequency limit, ωℓ/c ≪ 1, of this case and using cZ = 1/C, gives
1

Z̃(ω)
≃ − i ωℓ C +

1

Z̃ℓ

. (79)

This shows that the load is in parallel with a capacitor ℓ C.

Green’s function

The circuit impedance in eq. (75) can be used to find the Green’s function from which every response
can be computed. If the transmission line is subject to a voltage impulse, V (0, t) = V0δ(t), the
current at that position is found from the inverse Fourier transform

I(0, t) =
V0

2π

∞∫

−∞

e−iωt

Z̃(ω)
dω . (80)

The circuit impedance has zeros, and thus the integrand has poles, at frequencies satisfying

i tan(ωℓ/c) = tanh(iωℓ/c) =
Z̃ℓ

Z
. (81)

Because tan is periodic, there are an infinite number of such frequencies. These appear as an infinite
number of normal mode frequencies, giving the transmission line a response far more complicated
that simple circuit elements.

For a purely resistive load, Z̃ℓ = R < Z, the infinite number of frequencies lie along a horizontal
line below the real axis

ωn = πnc/ℓ − iγ =
2π

T
n − iγ , n = 0, ±1, ±2 . . . (82)

where T = 2ℓ/c is the round-trip transit time and γ satisfies

tanh(γℓ/c) = tanh(γT/2) =
R

Z
. (83)

Each of these frequencies is a simple zero of the circuit impedance

Z̃(ω) ≃ − iZ
ℓ

c
(ω − ωn) = − 1

2 iZT (ω − ωn) , (84)

which is a simple pole in the integrand of eq. (80)
For positive times, t > 0, he integral (80) can be closed in the lower half of the complex plane.

Doing so encloses all the poles, and the integral can be found by summing −2πi times the residues

I(0, t) =
2V0

ZT
e−γt

∞∑

n=−∞

e−2πi nt/T , t > 0 . (85)
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The final sum is a Fourier series of a chain of δ functions
∞∑

n=−∞

e−2πi nt/T = T
∞∑

j=−∞

δ( t − jT ) , (86)

so the current is

I(0, t) =
V0

Z

[

δ(t) + 2
∞∑

j=1

e−γjT δ( t− jT )

]

, (87)

where we have restricted the sum to t > 0 but added the δ(t) to account for the current at the
initial impulse. The response is a chain of successively decaying impulses from reflections off the
load. To complete the analysis we use (83) to write

e−γT =
1− tanh(γT/2)

1 + tanh(γT/2)
=

Z −R

Z +R
= α , (88)

where α was the factor used in sec. 1.5. In terms of this the current is

I(0, t) =
V0

Z

[

δ(t) +
∞∑

n=1

2αn δ( t − nT )

]

. (89)

The response to a step function input, V (0, t) = V0Θ(t) is found from the convolution with this,
which is just its integral from −∞ to t. The result is a series of steps, exactly as found in sec. 1.5.

Differential approach to circuit inductance

As a final exercise we create a transmission line by connecting together infinitesimal lumped circuit
elements. To an assembled line with circuit impedance Z̃(ℓ) we add a small segment with length
δℓ ≪ ℓ. This segment has capacitance δC = C δℓ and inductance δL = L δℓ, which add to the
existing impedance to create Z̃(ℓ+ δℓ), as shown in fig. 5. The inductance is added in series, and
the capacitance in parallel with that combination. The reciprocal of the new circuit impedance is
the sum of the reciprocal impedances of the parallel components

1

Z̃(ℓ+ δℓ)
=

1

Z̃(ℓ)− iωδL
− iωδC ≃ 1

Z̃(ℓ)
+

[

iωL
Z̃2(ℓ)

− iωC
]

δℓ , (90)

after expanding in |ωδL/Z̃ | ≪ 1. Expanding the left hand side

1

Z̃(ℓ+ δℓ)
=

1

Z̃(ℓ)
− 1

Z̃2(ℓ)

dZ̃

dℓ
δℓ + · · · , (91)

and equating the expressions term-by-term leads to the differential equation

dZ̃

dℓ
= iωC Z̃2 − iωL = iωC

[

Z̃2 − Z2
]

, (92)

after using Z2 = L/C. The expression in eq. (75) is the solution to this equation with initial
condition Z̃(ℓ = 0) = Z̃ℓ.

This exercise has shown that a transmission line can be envisioned as a ladder of capacitors
and inductors. Furthermore, we can obtain the asymptotic impedance of a transmission line by
taking the limit ℓ → ∞ in expression (92). The result is them one that makes dZ̃/dℓ = 0, which is
evidently Z̃ = Z =

√

L/C.

16



l+ lδ

L lδ

lδ

lδ

Z(         )lZ(   ) C

Figure 5: A step in the computation of the inpedance of a transmission line. To a partial line, with
impedance Z̃(ℓ), is added an inductance, Lδℓ in series, and a capacitance, Cδℓ in parallel. This
extends the transmission line by δℓ, so the combination has impedance Z̃(ℓ+ δℓ).

1.7 Transmission line with losses

The foregoing has dealt only with the ideal case of a transmission line with no losses. The most
general extension includes resistive contributions of two different kinds. This first is the resistance
present in the inner conductor. For simplicity we continue to assume the outer conductor is ideal,
but it would be possible, with a bit more effort, to include its resistance into this same term. This
resistance is accounted for by setting the electric field at the inner conductor, given by eq. (20), to

Ez(a, z, t) = − ∂Φ(a, z, t)

∂z
− ∂Az(a, t, t)

∂t
= RI(a, z, t) , (93)

where R is the resistance per unit length of the inner conductor. Using eqs. (8) and (16) to replace
Φ(a, z, t), and Az(a, z, t), gives

∂I

∂t
+

R
L I = − 1

L
∂V

∂z
, (94)

in place of eq. (25). If the voltage and current were uniformly distributed, the current would
therefore decay exponentially with time constant, L/R, exactly like a simple LR circuit.

The second contribution occurs if the material separating the conductors is not a perfect insu-
lator, but has some resistance. This leads to an effect known as leakage between the conductors,
quantified by conductance per unit length,5 typically denoted G with units Ω−1m−1. Leakage enters
the equation of charge conservation, formerly expressed by eq. (23). The net charge on a section
of inner conductor of length δz is δQ = λ(a, z, t) δz. This will change due to current entering the
section from the left, and leaving it from the right or radially outward

d

dt
δQ = I(a, z, t) − I(a, z + δz, t) −

Iρ
︷ ︸︸ ︷

(Gδz)V (a, z, t)

= δz
∂λ(a, z, t)

∂t
≃ −

[
∂I(a, z, t)

∂z
+ G V (a, z, t)

]

δz ,

where the radial current, Iρ, is driven by the voltage difference between the conductors across a
section of leaky insulator with conductance Gδz. Using eq. (9) to write λ = CV gives a revised

5Conductance is the reciprocal of resistance. When resistors are combined in parallel their conductances are
summed to obtain the conductance of the combination. Annular sections of leaky insulator combine in parallel so
their conductances add. Sections of inner conductor, on the other hand, add in series, so their resistances, Rδz, are
summed in that case.
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version of (26)
∂V

∂t
+

G
C V = − 1

C
∂I

∂z
. (95)

In this case, a uniformly distributed current and voltage, the voltage would decay with a time
constant, C/G, as it would for a traditional RC circuit — recall that conductance is the inverse of
resistance, and that both C and G are defined per unit length.

Equations (94) and (95) are the lossy telegraphers equations, replacing the lossless versions,
(25) and (26). They are still a set of coupled, first-order, linear PDEs, but they are a bit more
complicated. They cannot, for example, be combined into the classical wave equation. To appreciate
the complexity consider the wave solutions, V (z, t) = V̂ eikz−iωt and I(z, t) = Îeikz−iωt. Placing
these into eqs. (94) and (95) gives

[

ω + i(R/L) −k/L
−k/C ω + i(G/C)

]

·
[

Î

V̂

]

= 0 . (96)

A nontrivial solution requires the determinant vanish, yielding the dispersion relation

ω2 + i

(R
L +

G
C

)

ω − RG + k2

LC = 0 . (97)

The classic dispersionless version, with ω = ±k/
√
LC, is recovered with perfect conductors, R = 0,

separated by a perfectly insulating material, G = 0. Otherwise eq. (97) is more complicated than
a traditional wave equation.

To appreciate this more complicated dispersion relation we compute the evolution of current or
voltage initially distributed as ∝ δ(z). The response to this initial condition will be proportional
to

G(z, t) =
1

2π

∞∫

−∞

eikz−iω(k)t dk , (98)

where ω(k) is the solution of eq. (97). Using the quadratic equation to solve eq. (97) gives the
explicit dispersion relation

ω(k) = − i γ ± c
√

k2 − κ2 , (99)

where we have retained the original phase speed

c =
1√
LC

, (100)

and introduced the damping rate

γ =
1

2

(R
L +

G
C

)

. (101)

Both forms of loss contribute a negative imaginary part to the frequency, which produces exponen-
tial decay in the response — the expected effect of losses. The final parameter in the dispersion
relation

κ = 1
2c
∣
∣
∣RC − GL

∣
∣
∣ , (102)

is an inverse length characteristic of the losses. The upper and lower signs in eq. (99) are for
rightward and leftward propagation, respectively, and the branch of the square root is followed
continuously from k > κ where it is positive to k < −κ, where it is negative.
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Placing eq. (99) into eq. (98) gives an explicit form of the Green’s function

G(z, t) =
e−γt

2π

∞∫

−∞

eikz exp
(

∓ict
√

k2 − κ2
)

dk , (103)

where the upper and lower signs continue to apply to rightward and leftward propagation. The
remaining integral is a formidable inverse Fourier transform which will produce a complicated
function of space and time. This function is multiplied by an exponential damping as a result of
the losses. But the losses also produce dispersion which renders the response far more complicated
than that of a wave equation.

There is, however, one case where simple propagation is recovered. If resistance and leakage are
perfectly balanced so that

RC = GL , (104)

then κ = 0, according to eq. (102). In this case the integral in eq. (103) becomes a Dirac δ-function,
leading to a Green’s function

G(z, t) =
e−γt

2π

∞∫

−∞

eik(z∓ct) dk = e−γt δ
(

z ∓ ct
)

= e−|z|/ℓa δ
(

z ∓ ct
)

, (105)

where the attenuation length is

ℓa =
c

γ
=

Z

R , (106)

with impedance defined by Z =
√

L/C, as before. The initial pulse thus propagates along the
lossy transmission line attenuated but undistorted. This Green’s function can be used to find the
evolution of an arbitrary initial distribution of current and voltage. Provided this distribution
varies on scales much smaller than the attenuation length, ℓa, it will propagate with damping
but no distortion. According to eq. (106), the attenuation length is the distance over which the
accumulated resistance matches the cable’s impedance. A good copper wire will require kilometers
to match a typical impedance of say 50Ω. If, however, the transmission line fails to satisfy condition
(104) the Green’s function will not be of the form (105), and the shapes will be distorted as they
propagate.

The condition for undistorted wave propagation, namely eq. (104), was first derived by Oliver
Heaviside in the context of undersea telegraph cables and quickly applied to the newly invented
telephone. Heaviside’s insight was that, since it is impossible to completely eliminate resistance
R in any real conductor, eliminating distortion requires at least some leakage. If that is small,
then one must also find a way to increas the inductance per unit length L in order to satisfy the
distortion-free requirement, eq. (104).

Circuit impedance of a lossy transmission line

The previous section computed the circuit impedance of a lossless transmission line in two different
ways. The first used the analytic solution to the wave equation. We have no analogous solution
for the lossy version, so that method cannot be applied in this case. This leaves us with the
differential method where we add an infinitesimal section, δℓ to an exisiting transmission line with
circuit impedance Z̃(ℓ). The additional segment contributes, in parallel, a capacitor Cδℓ, a leakage
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resistor with conductance Gδℓ, and the series combination of the resistor, Rδℓ, inductor, Lδℓ, and
the existing the impedance, as shown in fig. 6. Summing these three reciprocal impedances of these
parallel contributions gives the reciprocal impedance of the combination

1

Z̃(ℓ+ δℓ)
=

1

Z̃(ℓ) +Rδℓ− iωLδℓ
+ Gδℓ − iω Cδℓ . (107)

Expanding all expressions to first order in the small segment, δℓ,

1

Z̃(ℓ)
− 1

Z̃2(ℓ)

dZ̃

dℓ
δℓ =

1

Z̃(ℓ)
−

[

R− iωL
Z̃2(ℓ)

− G + iω C
]

δℓ , (108)

and then equating the linear terms gives the differential equation

dZ̃

dℓ
= R − iω L +

(

iω C − G
)

Z̃2(ℓ) . (109)

lδ

1/G lδlδ

lδ lδ

Z(         )l+ lδlZ(   ) C

L R

Figure 6: A step in the computation of the impedance of a lossy transmission line. To a partial
line, with impedance Z̃(ℓ), is added an inductance, Lδℓ, and resistance Rδℓ, both in series, and a
leakage conductance, Gδℓ (resistance 1/Gδℓ), and capacitance, Cδℓ, both in parallel. This extends
the transmission line by δℓ, so the combination has impedance Z̃(ℓ+ δℓ).

Equation (109) characterizes the circuit impedance of a lossy transmission line in analogy to
eq. (92) for the lossless case. For clarity we can re-write the equation

dZ̃

dℓ
=

(

iω C − G
)
[

Z̃2(ℓ) − Z̃2
∞

]

, (110)

after introducing the asymptotic impedance

Z̃∞(ω) =

√

iω L − R
iω C − G =

√

L
C ×

√

ω + iR/L
ω + iG/C , (111)

for a lossy transmission line of infinite length. The pre-factor in the final expression is the char-
acteristic impedance Z =

√

L/C. The lossy version approaches this at frequencies above the
characteristic frequencies of the losses, R/L and G/C. Furthermore, under the condition for no
distortion, eq. (104), these frequencies are identical, the second factor becomes unity and Z̃∞ = Z.

To find the circuit impedance we re-write eq. (110) in the form
(

1

Z̃ − Z̃∞

− 1

Z̃ + Z̃∞

)
dZ̃

dℓ
=

d

dℓ
ln

(

Z̃ − Z̃∞

Z̃ + Z̃∞

)

= 2Z̃∞

(

iω C − G
)

= 2
√

(iω L −R) (iω C − G) . (112)
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We re-write the rhs

2
√

(iω L−R) (iω C − G) = 2i
√
LC
√

(ω + iR/L) (ω + iG/C) = 2iw(ω)/c , (113)

where c = 1/
√
LC is the signal speed as in the lossless case. This function of frequency goes over

to w(ω) = ω in the purely ideal case, R = G = 0. In the distortionless case, R/L = G/C = γ it
becomes w(ω) = ω + iγ.

The solution to eq. (112), for initial condition Z̃(0) = Z̃ℓ is

Z̃(ℓ) = Z̃∞







Z̃∞ tan
[

w(ω)ℓ/c
]

+ iZ̃ℓ

Z̃ℓ tan
[

w(ω)ℓ/c
]

+ iZ̃∞






. (114)

This is obviously analogous to eq. (75) with the arguments of the tangents changed ω → w(ω) and
Z → Z̃∞.

Figure 7: The complex impedance of a lossy transmission line plotted within the complex frequency
plane in units of c/ℓ. Red and blue curves show the amplitude and argument (phase) of Z̃(ω)
respectively. The impedance is purely real along the thick blue curve which includes the axis of
imaginary frequency. Poles occur inside shaded regions. A green diamond and square show −iR/L
and −iG/C respectively.

A separate derivation involves solving eqs. (94) and (95) for boundary condition V (0, t) = e−iωt.
With the specified time dependence they become

(

−iω +
R
L

)

I = −i

(

ω + i
R
L

)

I = − 1

L
∂V

∂z
(115)

(

−iω +
G
C

)

V = −i

(
ω + iG

C

)

V = − 1

C
∂I

∂z
. (116)

They are combined to

(R
L − iω

) (G
C − iω

)

V = −

w2(ω)
︷ ︸︸ ︷
(

ω + i
R
L

) (

ω + i
G
C

)

V = c2
∂2V

∂z2
, (117)

21



where the combination w2(ω) is identified from above. The general solution matching the boundary
condition is

V (z) = cos
[

w(ω)z/c
]

+ Ã sin
[

w(ω)z/c
]

, (118)

for an, as yet, unspecified value of Ã. The current is

I(z) = − i

ω + iR/L

(
1

L

)
∂V

∂z
=

iw(ω)/cL
ω + iR/L

{

sin
[

w(ω)z/c
]

− Ã cos
[

w(ω)z/c
]
}

=
i

Z̃∞(ω)

{

sin
[

w(ω)z/c
]

− Ã cos
[

w(ω)z/c
]
}

, (119)

after combining

w(ω)/cL
ω + iR/L =

√

ω + iG/C
ω + iR/L

√

C
L =

1

Z̃∞(ω)
(120)

Using expression (119) to find Z̃ℓI(ℓ) and equating that with V (ℓ) yields

i
Z̃ℓ

Z̃∞

{

sin
[

w(ω)ℓ/c
]

− Ã cos
[

w(ω)ℓ/c
]
}

= cos
[

w(ω)ℓ/c
]

+ Ã sin
[

w(ω)ℓ/c
]

. (121)

Multiplying by Z̃∞ and dividing by the cosine gives the expression

iZ̃ℓ

{

tan
[

w(ω)ℓ/c
]

− Ã

}

= Z̃∞

{

1 + Ã tan
[

w(ω)ℓ/c
]
}

. (122)

Solving for Ã yields

Ã =
iZ̃ℓ tan

[

w(ω)ℓ/c
]

− Z̃∞

iZ̃ℓ + Z̃∞ tan
[

w(ω)ℓ/c
] (123)

We evaluate eq. (119) at z = 0 to obtain

I(0) =
1

Z̃(ω)
= − i

Z̃∞(ω)
Ã . (124)

This gives the circuit impedance

Z̃(ω) = − Z̃∞(ω)

i Ã
= Z̃∞(ω)







Z̃∞ tan
[

w(ω)ℓ/c
]

+ iZ̃ℓ

Z̃ℓ tan
[

w(ω)ℓ/c
]

+ iZ̃∞






(125)

This has the limit Z̃ → Z̃ℓ when ℓ → 0; this is reassuring.
For purely imaginary frequency we write

ω + i
R
L = i

c

ℓ
DL , ω + i

G
C = i

c

ℓ
DC , (126)

and thus
w(ω)ℓ

c
= i

√

DLDC , Z̃∞(ω) = Z

√

DL

DC
, (127)
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where Z =
√
L/C, as always. The circuit impedance then becomes

Z̃(ω) = Z

√

DL

DC




Z
√

DL/DC tanh
(√

DLDC

)

+ Z̃ℓ

Z̃ℓ tanh
(√

DLDC

)

+ Z
√

DL/DC





= Z




Z
√

DL/DC tanh
(√

DLDC

)

+ Z̃ℓ

Z̃ℓ

√

DC/DL tanh
(√

DLDC

)

+ Z



 (128)

When the line is shorted or open (Z̃ℓ = 0 or ∞ respectively), the impedance of the transmission
line is

Z̃short = Z

√

DL

DC
tanh

(√

DLDC

)

, Z̃open = Z

√

DL

DC
coth

(√

DLDC

)

. (129)

The limit of zero frequency can be approached using this expression and taking

√

DLDC =
ℓ

c

√

RG
LC = ℓ

√
RG , Z

√

DL

DC
=

√

L
C

√

RC
LG =

√

R
G . (130)

The impedance at zero frequency

Z̃(0) =

√

R
G




tanh

(

ℓ
√
RG

)

+ (Z̃ℓ/Z)

(Z̃ℓ/Z) tanh
(

ℓ
√
RG

)

+ 1



 , (131)

is purely resistive, provided the load is resistive (Z̃ℓ is real). In the limit ℓ → ∞ this gives
Z̃(0) → Z̃∞(0) =

√

R/G.
The bottom expression in eq. (128) is regular at points where DL or DC vanish — there are

neither singularities nor branch points there. tanh() is an odd function with only odd powers of
its argument, so the products in the numerator and denominator involve only non-negative whole
powers of DL and DC . This means that the impedance is purely real along the entire axis of
imaginary ω (i.e. real DL and DC).

In the limit where DC → 0, the product in the numerator of the bottom expression in eq. (128)
goes to DL, and in the denominator to DC → 0. The result is

Z̃(−i
√

G/C) ≃ ZDL + Z̃ℓ , (132)

where DL = (ℓR/Z)− (ℓGZ) here. In the other limit, DL → 0, the product in the numerator goes
to DL → 0, while the product in the denominator to DC . The result is

Z̃(−i
√

R/L) ≃ ZZ̃ℓ

ZDC + Z̃ℓ

, (133)

where DC = (ℓGZ)− (ℓR/Z) here.
When both DL and DC are negative, we must choose the branches where

√
DLDC is negative

and
√

DL/DC is positive. The means that the the numerator of eq. (128) will vanish, and the
impedance will have a zero, where

√

|DL|
|DC |

tanh
(√

|DLDC |
)

=
Z̃ℓ

Z
. (134)
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The denominator will vanish, and the impedance have a pole, where

√

|DL|
|DC |

coth
(√

|DLDC |
)

=
Z̃ℓ

Z
. (135)
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