Force-free magnetic fields — Problem set 5

1. a. Find a constant-α field satisfying the following boundary conditions

\[
B_z(y, z = 0) = B_0 \cos\left(\frac{\pi}{L} y\right) \\
B_z(y, z = 2L) = 0 \\
B_y(y = -L, z) = 0 \\
B_y(y = +L, z) = 0
\]

(1)
(2)
(3)
(4)

and x is an ignorable coordinate in whose direction the domain extends infinitely. Do this for all allowable values of α and use a flux function $f(y, z)$ to express your answer.

b. Compute the magnetic energy, per length in x, as a function of α.

c. For $\alpha > 0$ find the field line anchored to $x = \left(\frac{1}{2}L + \varepsilon\right)\hat{y}$, where $\varepsilon \ll L$. How does the location of the other footpoint (i.e. other point on the $z = 0$ plane) vary with α? How does the apex height of this field line vary with α?

d. Show that for certain values of α there are constant-α solutions with homogeneous versions of boundary conditions (1)–(4). Use a flux function to write these solutions.

e. For smallest\(^1\) value of α from part d. show that the field contains, somewhere in the interior ($0 < z < 2L$, $|y| < L$), a straight magnetic field line parallel to the x axis. Find the field line which crosses the $x = 0$ plane a distance ε below this straight field line ($\varepsilon \ll L$).

f. For the same α from part e. construct a constant-α field subject to the inhomogeneous boundary conditions (1)–(4), but with an arbitrary amount of the solution from d. added on. Find the energy as a function of the homogeneous contribution.

\(^1\)smallest in magnitude.