Non-thermal particles

Motions of charged particles

Lecture 16

March 22, 2017

Non-thermal electrons

Maxwellian

Electron distribution function (complete details next lecture)

From Lecture 10

1. Some process* adds energy to subset of e-s from Maxwellian — creates NT tail. Often a power law:

$$f(\varepsilon) \sim \varepsilon^{-\delta}$$

2. Collisions return NT e⁻s to Maxwellian: thermalization. Adds energy to Maxwellian: heating h

> * This will be our focus **NOW**

What would we like to know?

- What is the flare acceleration process? What gives 10-1000 keV to e^-s initially w/ $\epsilon \sim 0.3$ keV ($T_e \sim 3$ MK)?
- Why does it produce a power-law distribution of e⁻ energies?
 - What determines δ ? ϵ_c ?
 - How are of pitch angles distributed?
- What fraction of e⁻s are accelerated?
- What fraction of released energy is given to NT e⁻s?
- Are ions also accelerated?

Formulating an answer:

Motion of single charged particle

$$m\frac{d\mathbf{v}}{dt} = q\mathbf{E} + \frac{q}{c}\mathbf{v} \times \mathbf{B}$$

$$\frac{d}{dt} \left(\frac{1}{2} m |\mathbf{v}|^2 \right) = \frac{d\varepsilon}{dt} = q\mathbf{v} \cdot \mathbf{E}$$

Use non-relativistic form —

- valid for e^-s w/ ε < 200 keV
- valid for protons w/ ε < 400 MeV

gyrofrequency:

$$\Omega_c = \frac{|q\mathbf{B}|}{mc} = 2\pi f_c$$

e-s:
$$\Omega_{ce} = 2 \times 10^9 \text{ rad/s} \left(\frac{|\mathbf{B}|}{100 \text{ G}} \right)$$

gyroradius:

$$r_{g} = \frac{V_{\perp}}{\Omega_{c}}$$
 really small

e-s:
$$r_{ge} = 1.0 \,\mathrm{cm} \left(\frac{|\mathbf{B}|}{100 \,\mathrm{G}}\right)^{-1} \left(\frac{\varepsilon}{1 \,\mathrm{keV}}\right)^{1/2}$$

Increase |B| slowly:

$$\tau >> \Omega_c^{-1} \sim 10^{-9} \,\mathrm{s}$$

Q: what remains fixed?

energy?

$$\frac{\partial \mathbf{B}}{\partial t} \neq 0 \Rightarrow \mathbf{E} \neq 0$$

Increase |B| slowly:

$$\tau >> \Omega_c^{-1} \sim 10^{-9} \,\mathrm{s}$$

Q: what remains fixed?

energy?

adiabatic invariant

$$J_{1} = \pi \frac{m v_{\perp}^{2}}{\Omega_{c}} \propto \frac{\varepsilon_{\perp}}{B} \propto B r_{g}^{2} \propto \Phi$$

double $|\mathbf{B}|$ \rightarrow double ϵ_{\perp}

pitch angle $|\mathbf{v}_1| = |\mathbf{v}_1|$ $|\mathbf{v}_2| = |\mathbf{v}_1|$ $|\mathbf{v}_2| = |\mathbf{v}_2|$ $|\mathbf{v}_2| = |\mathbf{v}_2|$

Static 3d field

- particle follows helix
- r_g from center
- center follows field line

$$\frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\rightarrow$$
 $\varepsilon = \frac{1}{2} m V^2 = \text{const.}$

also conserved: adiabatic invariant for gyromotion

$$\frac{\mathbf{v}_{\perp}^{2}}{B} = \mathbf{v}^{2} \underbrace{\frac{\sin^{2} \theta}{B}}_{\text{const.}}$$

 $\theta = \pi/2$ motion along field line stops: mirror point

$$B_m = \frac{B_1}{\sin^2 \theta_1}$$

Static 3d field

 $\theta_{\rm m}=\pi/2$

 $B > B_m$:

inaccessible

- particle follows helix
- r_g from center
- · center follows field line

$$\frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\Rightarrow$$
 $\varepsilon = \frac{1}{2} m V^2 = \text{const.}$

also conserved: adiabatic invariant for gyromotion

$$\frac{\mathbf{v}_{\perp}^{2}}{B} = \mathbf{v}^{2} \underbrace{\frac{\sin^{2} \theta}{B}}_{\text{const}}$$

const.

Loss cone: particles reach chromosphere before mirroring

$$\theta_0 < \theta_{loss}$$

$$\theta_{\rm loss} = \sin^{-1} \left(\sqrt{\frac{B_0}{B_{\rm chr}}} \right)$$

Consequence: Cornucopia

asymmetric mirrors
asymmetric footpoints

Li et al.

 $B_N < B_S \rightarrow \theta_N > \theta_S \rightarrow \theta_S$ more precip @ N

What can accelerate e-s?

Must ultimately be E ...

$$\frac{d}{dt} \left(\frac{1}{2} m \left| \mathbf{v} \right|^2 \right) = \frac{d\varepsilon}{dt} = q \mathbf{v} \cdot \mathbf{E}$$

... but what creates/sustains E?

DC E field cannot increase ε_{\perp}

Mean motion:

drift of gyrocenter @ constant speed

 $\langle \mathbf{v}_{\perp} \rangle = \mathbf{v}_d = c \frac{\mathbf{E} \times \mathbf{D}}{|\mathbf{B}|^2}$

NB: x-form to drift frame:

$$\mathbf{E}' = \mathbf{E} + \frac{1}{c} \mathbf{v}_d \times \mathbf{B} = 0 \quad \Rightarrow \text{ simple gyromotion}$$

Changing B can increase ε_{\perp}

Betatron acceleration

$$\hat{\phi} = \cos\varphi \,\,\hat{\mathbf{y}} - \sin\varphi \,\,\hat{\mathbf{x}}$$

$$E_{\phi} = \mathbf{E} \cdot \hat{\phi} = E_0 \sin[(\omega t - kz) \mp \varphi]$$

$$E_{\phi} = \mathbf{E} \cdot \hat{\phi} = E_0 \sin[(\omega t - kz) \mp \varphi]$$

Particle position:

$$z(t) = \mathbf{v}_z t$$

$$\varphi(t) = -s \ \Omega_c t + \varphi_0$$

$$s = \frac{q}{|q|} = \pm 1 \quad \begin{array}{c} \text{sign of } \\ \text{charge} \end{array}$$

$$E_{\phi} = \mathbf{E} \cdot \hat{\phi} = E_0 \sin[(\omega t - kz) \mp \varphi]$$

Particle position:

$$z(t) = \mathbf{V}_z t$$

$$\varphi(t) = -s \ \Omega_c t + \varphi_0$$

$$s = \frac{q}{|q|} = \pm 1 \quad \text{sign of charge}$$

$$E_{\phi} = \mathbf{E} \cdot \hat{\phi} = E_0 \sin[(\omega t - kz) \mp \varphi]$$

Particle position:

$$z(t) = \mathbf{V}_z t$$

$$\varphi(t) = -s \ \Omega_c t + \varphi_0$$

$$s = \frac{q}{|q|} = \pm 1 \quad \text{sign of charge}$$

$$\frac{d\mathbf{v}_{\perp}}{dt} = qE_{\phi} = qE_{0}\sin\left[(\omega - k\mathbf{v}_{z} \pm s\Omega_{c})t \mp \varphi_{0}\right]$$
RH

resonance:

$$\omega - k \mathbf{v}_z = \pm s \Omega_c$$

electrons (s=-1) resonate w/ RH wave

resonance:
$$\omega - k\mathbf{v}_z = \mp s\Omega_c$$

Resonant particles gain energy

- at expense of the wave
- → wave loses energy (amplitude diminishes)
- a.k.a. wave damping
- a.k.a. wave-particle interaction

DC **E** field **can** increase ϵ_{II}

v | B → no effect – consider only electric field

DC **E** field **can** increase ε_{11}

$$\varepsilon_{ra} = n_i \frac{2\pi e^3 \Lambda}{\left| E_s \right|} = k_b T \frac{E_D}{\left| E_s \right|}$$

Dreicer field

$$E_D = n_i \frac{2\pi e^3 \Lambda}{k_b T} = 6 \,\text{mV/m} \,\frac{n_9}{T_6}$$

DC **E** field **can** increase ε_{11}

$$\varepsilon_{ra} = n_i \frac{2\pi e^3 \Lambda}{|E_s|} = k_b T \frac{E_D}{|E_s|}$$

Dreicer field

$$E_D = n_i \frac{2\pi e^3 \Lambda}{k_b T} = 6 \,\text{mV/m} \,\frac{n_9}{T_6}$$

Moving mirror can increase $\epsilon_{\rm II}$

Fast MS shock: a moving mirror

Shocks are good particle accelerators

From Cane & Lario 2006

Standing Fast MS shock

Fast MS waves are moving mirrors

Fast MS waves are moving mirrors

wave-particle interaction

Summary

- Ions and electrons follow magnetic field lines (gyroradii are very small)
- Can mirror from points of strong field if their pitch angle is large enough
- Can gain energy in various ways
 - DC parallel E field (prob. sub-Dreicer)
 - increasing **B** (betatron acceleration)
 - moving mirrors (Fermi acceleration)
 - wave-particle interaction