Non-thermal particles

Motions of charged particles
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March 22, 2017



Non-thermal From Lecture 10

electrons 1. Some process* adds energy
Maxwellian to subset of es from
| f(g)~&ex & Maxwellian — creates NT
T P kT tail. Often a power law:
1 -
f(e) definesp, u & T f(g) ~ €

2. Collisions return NT e's to
Maxwellian: thermalization.
Adds energy to Maxwellian:
heating h

. * This will be our
Electron distribution function focus NOW

(complete details next lecture)



What would we like to know?

 What is the flare acceleration process?

What gives 10 — 1000 keV to es initially
w/ e~ 0.3 keV (T, ~ 3 MK)? A
Why does it produce a power-law

distribution of e energies?
— What determines 9? ¢_?

— How are of pitch angles distributed?
What fraction of es are accelerated?
What fraction of released energy is

given to NT e’s?

 Areions also accelerated?



Formulating an answer:

Motion of single charged particle

mﬂ=qE+gva
dt C
d »\  de
> —(lmv )=—= v-E
dr\’ ‘ ‘ a7

|

€

Use non-relativistic form —
e valid foresw/ e <200 keV
* valid for protons w/ € < 400 MeV



One charged particle in B

gyrofrequency:
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mc
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es: Q —2x109rad/s( B| )

T AN

gyroradius: really fast

\%
I’g=Q—J; /

really small




One charged particle in B

Increase |B| slowly:
-1 -9
T>>Q ~107s

Q: what remains fixed?

energy?
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One charged particle in B
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action: J, = §pdq n—g =area

phase space: p, vs. x



One charged particle in B
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One charged particle in B

Increase |B| slowly:
7>>Q"' ~107s

Q: what remains fixed?

adiabatic invariant

mv: € )
J =n—x iOCBrg x D
Q B

C

double |B| =>» double¢



pitch
angle

Static 3d field

e particle follows helix

° T, from center

e center follows field line

0B
ot
1 2
2> E£= >MYV = const.

0

* also conserved: adiabatic
invariant for gyromotion
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Static 3d field

e particle follows helix

° T, from center

e center follows field line

B

=

Ve D 8=%mV2 = const.
0, =m/2

0

0 = /2 =» motion B . .
. . * also conserved: adiabatic
along field line

i . invariant for gyromotion
stops: mirror point

B = b, inaccessible b B

i 2 const.
sin” 6,




Loss cone: particles
reach chromosphere
before mirroring

_B, | mirror 0. < b
sin’g, | point

loss




thermal
particles

particles scattered
before mirroring
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What can accelerate e's?

Must ultimately be E ...

d de
E(%m“"z) = qv-E

... but what creates/sustains E?



DC E field cannot increase €

Mean motion:
drift of
gyrocenter @
constant speed

NB: x-form to drift frame:

1
E'=E+-v,xB=0 =» simple gyromotion

C



Changing B can increase € |

Betatron acceleration

c Ot Somov & Kosugi 1997



Electromagnetic wave can too

_ RH
« E=E [+cos(wr-kz)X + sin(wt - kz)y |

Y4

' A= LH
QA

’ ’;‘?"‘«“"'/ :‘;‘-‘ / RH circularly
~y ‘@h” ;:“\‘\‘ / polarized wave

¢ =cos@ ¥ —sing X

E,=E-¢=E,sin[(wr - k) T ¢]



Electromagnetic wave can too
E,=E-¢=E,sin[(wt-kz) T ¢]

Particle position:

2(t)=v_t
p()=—-sQL 1+,
q sign of



Electromagnetic wave can too
E, =E-q3=EOsin[(a)t—kZ)$€0]

Particle position:

2(t)=v_t
p()=—-sQL 1+,
q sign of



Electromagnetic wave can too
E, =E-q3=EOsin[(a)t—kZ)$€0]

Particle position:

2(t)=v_t
p()=—-sQL 1+,
_9_ . sign of
> m ~ 7 charge
RH
dv . \
dtl =qE, = qE, sm[(a) — kv, i‘{Qc)t T qpo]

LH

electrons (s=-1)
resonate w/ RH wave

RH
_K/
resonance: (W —kV_=TFs




Electromagnetic wave can too

resonance: (W —kV_=TFs2

Resonant particles gain energy

— at expense of the wave

=» wave loses energy (amplitude diminishes)
a.k.a. wave damping
a.k.a. wave-particle interaction



DC E field can increase €|

v || B = no effect — consider only electric field

Rutherford x-section

: §> 2me’A
> O .=
\Y el 2
E

4
S _%j 27e A]=e E (1_ sm)
£ £
drag —
“run away” acceleration:
de/ds >0
€> €,




DC E field can increase €|

3 Dreicer field
fra =T M - ka& 2ae’ A )
E, E, E,=n = 6mV/m =2
kT T,
Maxwellian Sub-Dreicer
A
f(e) . IE| <E,
f(e) « exp|—— |
k,T small fraction
of particles
run away




DC E field can increase €|

21’ A E Dreicer field
€y =1 —— =k, —= 2me’A n
E, E, E,=n, = 6mV/m —=
k,T T,
Maxwellian

f(e) « eXp(—%

b

Super-Dreicer
) |E.| > Ej

significant fraction of
particles would run
away... but can they?




Moving mirror can increase €
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Fast MS shock: a moving mirror

B, /I Viui
/, :O Fermi Acceleration
/ (Fermi 1949)

/ a.k.a. 15t order Fermi

acceleration

B, a.k.a. shock-drift
acceleration

> Vi1p= Vit 2 Vs




Shocks are good particle accelerators
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Standing Fast MS shock

standing shock
— shrinking
field line

Somov & Kosugi 1997




Fast MS waves are moving mirrors
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Fast MS waves are moving mirrors
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Summary

* lons and electrons follow magnetic field
lines (gyroradii are very small)

* Can mirror from points of strong field — if
their is large enough

* Can gain energy in various ways
— DC parallel E field (prob. sub-Dreicer)
— increasing B (betatron acceleration)
— moving mirrors (Fermi acceleration)
— wave-particle interaction



