
Hale COLLAGE problem set 1 (Due Wed. Feb 15)

1. The first lectures used simple problems, formulated in two dimensions, to illustrate the
role of magnetic reconnection in releasing stored energy. Here we explore such model for
a compact flare — no flux rope or eruption. The model involves two identical magnetic
bipoles, whose field is shown in fig. 1a. Any magnetic field in the (y, z) plane, can be
written using a flux function A(y, z)

B(y, z) = ∇A× x̂ =
∂A

∂z
ŷ −

∂A

∂y
ẑ . (1)

Contours of the function show field lines, and its value at any point (z ≥ 0) gives the flux
(per ignorable length) ψ passing between that point and the origin (y, z) = (0, 0). (If you
have no experience working with flux functions, you might try convincing yourself of these
important properties using vector calculus.)

(a) (b)

Figure 1: The field above a pair of line-bipoles P1–N1 (left) and P2–N2 (right). (a) Shows the
potential field defined by eq. (2). (b) Shows the field with a single island, given by eq. (3), used
as a simple model of a current sheet. The flux linking P1 to N2, denoted ψ12 is the same in
both examples.

Figure 2: The field when the inner separation, 2a, is decreased (left) and increased (right).
The null point has been deformed into a current sheet, shown with a dark curve. The flux ψ12

connected P1 to N2 is the same in each case as in the potential field, fig. 1a.

The pair of bipoles consists of four sources, two positive and two negative, located on
the photosphere (z = 0) and arranged symmetrically about the z axis (y = 0) at points



y = ±a and y = ±b (see fig. 1a). The potential field, ∇×B = 0, above this distribution
is generated by the flux function

A(p)(y, z) = λ tan−1
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)

, (2)

for z > 0, where the magnetic flux (per ignorable length) of each sources in πλ. (You can
see from the definition that A(p) = πλ at points on the photosphere −b < y < −a and
a < y < b.)

a. The potential field has a single X-point at (y, z) = (0, zx). Find the value of zx
explicitly in terms of a, b, and λ. Evaluate the flux function at that point to obtain

the amount of flux, ψ
(p)
12 , connecting P1 to N2 in a potential field. Verify that this

expression has the correct values in limits a/b→ 1 and a/b→ 0.

b. Say we begin with a = b/2, and then change a by a small amount ∆a≪ a. Compute

the change ∆ψ
(p)
12 to lowest order in ∆a/a≪ 1.

c. In an ideal plasma, where E′ = 0, the flux connecting P1 to N2, ψ12, will not change.
If we change a, as in part b, the field will develop a current sheet in place of the null
point, as shown in fig. 2. It is possible to approximate the sheet with a set of wires
whose islands link together to form a chain. The simplest such model has a single

wire, located at z = h, and carrying current Ics. This creates a single island, as shown
in fig. 1b. The field is given by a potential

A(y, z) = A(p)(y, z) +
Ics
c

ln

[

y2 + (z + h)2

y2 + (z − h)2

]

, (3)

where A(0)(y, z) is given by eq. (2). (Note that the added term vanishes along z = 0,
so the wire does not affect the vertical photospheric field. This is because the added
terms consists of a wire, at z = h, and an oppsing image current at z = −h.)

The field generated by eq. (3), contains two null points in place of the single null
in A(0)(y, z). To model a current sheet these must occur at the same value of A, as
in fig. 1b. This value gives the flux ψ12 in the presence of the current sheet. The
separation between the two nulls approximates the extent of the actual current sheet,
2L, as in fig. 2.

For which sign of Ics will these null points both fall on the z axis as in fig. 1b? Explain
your answer in words. Use this sign and find the null positions in the limit of small
current. In this limit you may take h = zx, from part a., and expand expressions
in powers of z − zx, to obtain a location to leading order in Ics/cλ ≪ 1. Find both
nulls and verify that they each have the same value of A (justifying our assignment
of h = zx).

d. Use the results of c. to compute the flux difference from a potential field in the case
b = 2a to leading order in Ics. This should take a form

∆ψ12 = ψ12 − ψ
(p)
12 ∝ Ics ln

(

α|Ics|
)

, (4)

where you need to find the constant of proportionality and the value of α. Next find
the distance between X-points, as an approximation to the full length of the current
sheet, 2L. Find this to leading order in current, explicitly in terms of Ics, λ and a.



e. The energy (per ignorable length) released by complete reconnection of a current
sheet (∆ψ12 → 0) can be found from the electromagnetic work integral

∆EM =
1

c

∆ψ12
∫

0

Ics(∆ψ12) d(∆ψ12) . (5)

Use the approximate expression from part d. to perform the integral explicitly and
obtain an explicit expression in terms of Ics. (This might require an integration by
parts.)

f. We may use this simple model to obtain the magnetic field strength Bi just outside
the actual current sheet. Ampère’s law,

4π|Ics|

c
=

∮

B · dl ≃ 4LBi , (6)

can be used, in conjunction with the length and current from e., to obtain an explicit
expression for Bi in terms of Ics, λ and a, for the case b = 2a. Assuming some uniform
mass density ρ0 write down the value of the Alfvén-transit time

τ
A

=
2L

v
A

, (7)

for the current sheet.

g. We now use the results above to obtain numerical values for a simplified model of a
compact flare. Consider a case where a = 3 × 109 cm, and b = 2a = 6 × 109 cm.
We will assign a finite extent, Lx = 1010 cm in the previously ignorable direction,
but continue to use the two-dimensional expressions obtained above. Assign the
parameter λ so that every source has a total flux of 1022 Mx. The current sheet
builds up as the inner sources each move by ∆a = 109 cm under ideal conditions
(E′ = 0). Assume the motion is in the direction which produces a vertical current
sheet. Use the expressions derived for ∆a≪ a to find the length 2L of the resulting
current sheet, the height of its center, h, the current it carries |Ics| (express this
in Amps), and the energy available for release by magnetic reconnection. Finding
the current will require you to solve a transcendental equation. You may do this
approximately in whichever manner you prefer.

h. Following the storage phase (part g.) there is sudden and complete reconnection of
the current sheet, restoring a potential field (∆ψ12 → 0). This produces flare ribbons
in a region whose photospheric, vertical field strength is Bz,0 = 300 G (use this
instead of the pathological values you would obtain using eq. (3) at z = 0). Each
flare ribbon moves horizontally with a mean velocity vrib = 3 km/s. What is the
time, τ

rx
, required for complete reconnection? Use this to compute the average power

released in the flare, the mean reconnection electric field (expressed in V/m), and
the energy flux incident on each ribbon (erg/cm2/s). Finally assume a mass density
ρ0 = 10−15 g/cm3 at the current sheet and compute the Alfvén Mach number of the
reconnection.


