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A model is investigated describing the resistive dissipation of a finite, two-dimensional current sheet
subject to suddenly enhanced resistivity. The resistivity rapidly diffuses the current to a distance
where it couples to fast magnetosonic modes. The current then propagates away as a sheath moving
at the local Alfvén speed. A current density peak remains at the X-point producing a steady electric
field independent of the resistivity. This transfers flux across the separatrix at a rate consistent with
the external wave propagation. The majority of the magnetic energy stored by the initial current sheet
is converted into kinetic energy, far from the reconnection site, during the fast mode propagation.

I. INTRODUCTION

The first models of magnetic reconnection were of a steady
state process occurring at a magnetic neutral point, or X-
point.1, 2, 3, 4 An electric field at the X-point transfers mag-
netic flux and converts magnetic energy to both heat and ki-
netic energy. The structure of magnetic reconnection in these
models has been largely borne out by subsequent investigation.

A notable shortcoming of these steady-state models is in il-
luminating the energetics of magnetic reconnection. For ex-
ample, they involve a velocity field extending to arbitrarily
large distances, so kinetic energy is potentially infinite. It
is therefore difficult to identify the source of the kinetic en-
ergy in order to discriminate between flow generated by the
reconnection itself (spontaneous reconnection) or due to an
external agent “driving” the reconnection (forced reconnec-
tion). In Petschek’s model and its generalizations by Priest and
Forbes,5 the bulk of the energy conversion is not in the diffu-
sion region, but rather at the four standing slow-mode shock
waves extending from it. We shall in this paper suggest a pos-
sible source for this energy, which in the above models is sim-
ply assumed to be stored throughout space and brought in by
a steady flow.

The energetics of reconnection are more readily studied in
models of transient reconnection episodes, with a definite be-
ginning. Semenov et al.6 and then Biernat et al.7 studied the
effects of a sudden localized reconnection event occurring on
an existing current sheet. In their models, and subsequent
developments,8, 9 an infinite current sheet separates two layers
of uniform magnetic field. A localized electric field, perhaps
due to an enhancement in resistivity, is introduced beginning
at time t = 0 at a single point in the sheet. This creates an
X-point at that particular point and causes shocks of various
characters, fast, slow and intermediate, to propagate outward.

In later study of a similar model Nitta et al.10, 11 consid-

ered a reconnection electric field which persisted at a con-
stant value after its introduction at t = 0. They found a self-
similar solution in which a circular fast magnetosonic (FMS)
shock establishes, in its wake, reconnection inflow and outflow
matching a more traditional steady-state reconnection at the
X-point, including slow shocks emanating from the X-point.
The fast mode changes the magnetic field only slightly so the
slow shocks make a small angle with the current sheet, as in
Petschek’s steady state model.

The structure of the reconnection at the X-point strongly re-
sembled the steady-state solutions, even though these models
were decidedly unsteady.12 The unsteady models did, how-
ever, reveal a novel energy release scenario. As the shocks of
each type expand away from the reconnection site, they con-
vert magnetic energy into heat and kinetic energy. A vanishing
fraction of this energy conversion occurs within the reconnec-
tion site itself, which is, after all, very small. The energy con-
version is therefore a more global process than steady-state
theories suggest. Significant energy is converted not only at
standing slow-mode shocks but also at outward-propagating
fast-mode shocks.

Models with infinite current sheets do, however, possess ar-
tifacts in their energetics. The infinite sheet is intended to rep-
resent only a small piece of a realistic, finite current sheet.
Thus the shocks become less realistic by the time they leave
the local neighborhood. A finite current sheet creates a mag-
netic field diminishing inversely with distance, rather than in-
definitely uniform. The extended magnetic field created by
a local sheet is the free energy which reconnection will tap.
Reconnection will diminish the current thereby decreasing the
energy in the extended field. In uniform models with infinite
sheets, on the other hand, neither their net current nor their far-
field are significantly changed by reconnection. Finite sheets
are thus uniquely suited to reveal an essential element of re-
connection energetics: a local, diffusive process (reconnec-

1



Draft: 16 November2007 Longcope & Priest 2

tion) must initiate global energy release.
In models of two-dimensional, transient reconnection we

expect the X-point to play two different roles at once. As in
other models, an X-point will form within the sheet at the re-
connection site. A global X-point is also the field structure
within which the finite current sheet is most naturally embed-
ded. This is a byproduct of the X-point’s tendency to “col-
lapse” under slow, external perturbation, creating the current
sheet in the first place.13, 14, 15 In the absence of reconnection
these current sheets are associated with “storage”, as magnetic
energy, of the work done by the slow perturbations. (The cur-
rent sheet is finite but the field it creates extends throughout
space, and this is where the energy is actually stored.) Changes
to the current sheet produced locally by transient reconnection,
especially the change in net current, must propagate outward
along the global X-point field in which the sheet finds itself.
The details of this propagation differ from models with infinite
sheets, since those are embedded in uniform external field.

Fast modes in the vicinity of an X-point were studied by
Craig and McClymont16 and Hassam17 (hereinafter they will
be collectively referred to as CMH). In order to focus on the
interaction of dissipation with wave propagation they studied
dynamics in the absence of plasma pressure. A cylindrical
disturbance was initiated at some distance from an initially
current-free X-point. The disturbance converged from every
direction toward the X-point where the diffusive effects of re-
sistivity become significant. Only at this point is some of the
current and energy of the disturbance dissipated. The distur-
bance is also reflected by this dissipation and propagates out-
ward beyond further effects of diffusion. If it is reflected once
more at the outer boundary, the process will repeat with sub-
sequent dissipation and reflection.

Both studies found that the energy of the disturbance was
largely dissipated after several bounces. This corresponds to
the Alfvén transit time multiplied by the squared logarithm of
the Lundquist number at the boundary (i.e. proportional to the
squared logarithm of the inverse resistivity). The energy dissi-
pation in this model is therefore fast since it depends only very
weakly on the value of diffusivity. Following the above dis-
cussion it is also significant that dissipation is almost entirely
localized to the X-point itself.

In the present study we use the CMH model,16, 17 to study
the outward propagation of fast mode disturbances initiated by
reconnection at the X-point itself. This will provide insight
into the energy release initiated by reconnection. No matter
how the reconnection occurs it will be localized to a region
near the current sheet, and therefore near the X-point. It will
transfer flux though the X-point thereby seeking to reduce the
current in the sheet itself. This change has implications at arbi-
trary distances where the magnetic field is proportional to that
current.

The adjustment of distant field by fast waves constitutes en-
ergy release. Its remove from the initial current sheet makes it
unlikely that the energy release will depend on details of the
reconnection process. In the interest of simplicity we there-
fore choose a very simple model of a transient reconnection
process. In our model the resistivity of the plasma is every-
where enhanced from zero to some finite value, beginning at
t = 0. This leads to simple, resistive diffusion of the current

sheet, which then couples to the global field via FMS waves.
The enhanced-resistivity model for transient reconnection

is adopted for simplicity, and to make contact with previous
investigations. Forbes et al.18 studied the effect of suddenly-
enhanced resistivity on an infinite current sheet. They found
that the diffusion coupled to outgoing FMS waves. Unfor-
tunately, the diffusion could not decrease the current due, as
alluded to above, to the uniform external field. Studies of in-
finite sheets in two and three dimensions have also adopted
a suddenly-enhanced resistivity.10, 19 They found results con-
forming to the behaviors outlined above.

In this work we first describe the finite current sheet which
forms the initial condition. Then in §III we present the CMH
equations. We solve these numerically, using our initial con-
dition, and analyze the behavior of the solution. We find that
most of the energy released by reconnection is converted, by
the outward propagating FMS waves, into kinetic energy; a
vanishingly small fraction is actually dissipated during the re-
connection itself. In §V we return to consider the limitations
of the model itself.

II. RECONNECTION AT A CURRENT SHEET

The prototype of a two-dimensional current sheet, proposed
by Green14 and Syrovatskii,15 is embedded in an X-point field
B0 = −B′(yx̂+xŷ). The magnetic field is planar and can, in
general, be expressed in terms of a flux function, B = ∇A×ẑ.
The current sheet field uses a flux function written as the real
part of a complex function, A(x, y) = Re{Ψ(x + iy)}, where

Ψ(w) = 1
2B′w

√
w2 −∆2 − 2I0 ln(w +

√
w2 −∆2) , (1)

with constants B′, ∆ and I0 = ∆2B′/4. Due to the Cauchy-
Riemann equations the flux function will be harmonic (∇2A =
0), and thus current-free, wherever Ψ(x + iy) is analytic. This
is everywhere except along the branch cut between x = −∆
and x = +∆. This singularity is the current sheet across
which the magnetic field is discontinuous, as shown in Fig.
1. In spite of this singularity the magnetic field is a stable
equilibrium provided the resistivity is exactly zero.

Away from the current sheet (r > ∆) the flux function can
be expanded as a series

A(r, φ) = 1
2B′r2 cos(2φ)− 2I0 ln(r/∆)

+
∑

m≥2

I0
jm

m

(
∆
r

)m

cos(mφ) , (2)

with the dimensionless coefficients

jm =
1
π

∫ 1

−1

um
√

1− u2 du =
1 · 3 · · · (m− 1)

2 · 4 · · ·m · (m + 2)
,

for even integers m. The first term on the right of (2) produces
the simple X-point B0(x, y) = −B′(yx̂+xŷ). The remaining
terms result from the current, I0, distributed within the sheet,
and can be considered a perturbation to the X-point field. Re-
connection occurring within that sheet will diminish or com-
pletely eliminate the current, thereby changing those terms in
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FIG. 1. The magnetic field of an equilibrium current sheet. Solid
lines are contours of A(x, y) which trace field lines. Dashed lines
show the contours of A0, which are field lines of the unperturbed X-
point field. The inset, surrounded by dotted lines, is a close-up of the
neighborhood of the current sheet.

the flux function. We will explore the dynamics whereby this
local change propagates to the far field.

The most significant changes in the far field will be in the
m = 0, logarithmic term, second on the right of (2). That term
alone is related to the value of A on the separatrix. Changes
in this value are a manifestation of reconnection flux trans-
port, so m = 0 perturbations alone are termed “topological
perturbations”.16

Furthermore, the m = 0 term contains virtually all of the
magnetic energy in the perturbation. The magnetic energy in-
tegral

Wm =
1
8π

∫
|∇A |2 r dr dφ (3)

of the full flux function converges in any finite region includ-
ing the sheet. When extended to large radius L, the m = 0
contribution to the integral is

I2
0

∫ L dr

r
∼ I2

0 ln(L) ,

which diverges as L →∞; all other perturbation contributions
converge. The small current sheet thereby contains a signifi-
cant amount of energy distributed throughout the magnetized
volume. This energy, almost entirely in the m = 0 mode, will
be released by the elimination of the current sheet.

III. DYNAMICS OF THE AXISYMMETRIC MODE

A. The model equations

We study the dynamical evolution of the magnetic field as a
result of the dissipation or reconnection of the current sheet

above. The dissipation is accomplished by introducing a uni-
form resistivity η at t = 0. We demonstrate below that there is
a natural dissipation length scale `η ∼ η1/2. In order to sim-
plify our analysis we assume η to be large enough that `η À ∆
the size of the sheet. As a result of this assumption the dy-
namics can be approximated by linearizing the resistive MHD
equations about the X-point equilibrium B0 = ∇A0 × ẑ

∂B1

∂t
= −∇(v1 · ∇A0 )× ẑ + η ∇(∇2A1)× ẑ , (4)

∂v1

∂t
= −∇A0

4πρ0
∇2A1 , (5)

where the subscript 1 designates perturbations. Following
CMH16, 17 the plasma pressure is neglected for simplicity.

A defining feature of the X-point field (the unperturbed
field) is that its magnitude increases linearly with radius, as
|B0| = B′r. The Alfvén speed of the field therefore increases
similarly: vA,0 = ωAr, where ωA = B′/

√
4πρ0 is a charac-

teristic frequency. The corresponding time scale, 1/ωA, is the
time taken for an Alfvénic disturbance to travel inward from a
radius r to a radius r/e. The diffusivity and Alfvén frequency
together define the diffusive radius

`η =
√

η/ωA . (6)

In order to consolidate the notation we introduce the vari-
ables

C(r, t) = rBφ = − r
∂A1

∂r
(7)

U(r, t) = v1 · ∇A0 = − ẑ · (v1 ×B0) , (8)

related to the enclosed current and the motional electric field
respectively. Both C and U are assumed independent of φ in
order to focus on the dynamics of m = 0 mode. The m = 0
component of C is related to the net current inside a radius r

Ienc(r) =
1
4π

∮
B1 · dl = 1

2r Bφ = 1
2C(r) . (9)

Note that an axisymmetric U(r, t) corresponds to a velocity
field with φ-dependence akin to m = 2. Where U > 0 there is
outward flow along the x axis and an inward flow along the y
axis.

Equations (4) and (5) can be used to form pair of coupled
linear PDEs for the m = 0 components of C and U ,

∂C

∂t
= r

∂U

∂r
+ η r

∂

∂r

(
1
r

∂C

∂r

)
, (10)

∂U

∂t
= ω2

Ar
∂C

∂r
. (11)

These two can be combined into the single higher-order equa-
tion

∂2C

∂t2
= ω2

Ar
∂

∂r

(
r
∂C

∂r

)
+ ηr

∂

∂r

(
1
r

∂2C

∂r∂t

)
, (12)

closer to the one actually studied by Craig and McClymont16

and by Hassam.17 They solved a version of this equation for
the flux function, A1, inside a finite cylinder, r ≤ L. Has-
sam found closed form expressions, in terms of hypergeomtric
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functions, for damped-harmonic eigenmodes satisfying the
condition A1(L, t) = 0.

At large distances, r À `η , the dissipative term (second on
the right) may be dropped from (10). What remains is a pair of
telegraphers equations in the coordinate R = ln r. Solutions
to these can be written in terms of a single arbitrary function,
F (x), of one variable

C(r, t) = C0 − F (ωAt∓ ln r) (13)
U(r, t) = ± ωAF (ωAt∓ ln r) , (14)

where C0 is a constant. The upper or lower signs correspond
to an FMS disturbance propagating outward or inward respec-
tively. The arbitrary function F describes the structure of the
disturbance which propagates without dispersion at the radi-
ally increasing Alfvén speed; this is also the FMS speed since
the sound speed vanishes in our approximation.

Inward disturbances decelerate exponentially as they ap-
proach the origin. CMH16, 17 studied the evolution of distur-
bances propagating inward from an outer boundary r = L,
and thus took C0 = 0. After a time∼ ω−1

A ln(L/`η) ∼ − ln η
the waves reached a radius where the dissipative term could no
longer be ignored. They were reflected and partially absorbed
there.

We are interested instead in solutions that are initiated from
the center and propagate only outward. We take the system to
be initially stationary, so U(r, 0) = 0 and the function F (x) →
0 as x → −∞. We also assume that the magnetic field is
initially given by the m = 0 component of the field outside
a current sheet, as given by expression (2). Noting that C =
−r(∂A/∂r) we find that the current sheet sets the constant
C0 = 2I0. The outward propagating disturbance will take the
form a of a positive F representing the diminished current left
behind by the reconnection.

Immediately after the resistivity is initiated (t = 0) there
will be little motion and the first term on the right of Eq.
(10) may be neglected. What remains is a kind of diffu-
sion equation for C(r, t). The rationalized current density,
J = r−1(∂C/∂r) satisfies the traditional diffusion equation

∂J

∂t
= η

1
r

∂

∂r

(
r
∂J

∂r

)
= η∇2J . (15)

A simple solution to this beginning as the current of an in-
finitesimally thin wire, J(x, t) ∝ δ(x), is

Jd(r, t) =
C0

2ηt
exp

(
− r2

4ηt

)
. (16)

The actual initial condition for the diffusive phase will re-
flect the internal structure of the current sheet of breadth 2∆.
In the limit ∆/`η → 0 the structure will diffuse away rapidly
leaving a current density similar to expression (16). We will
hereafter use this as the initial condition. Since `η is the only
length scale in the problem we may use it as the unit of length,
without loss of generality, and the solution will apply to an
arbitrary diffusivity η 6= 0.

The other functions corresponding to Eq. (16) are

Cd(r, t) = C0 − C0 exp
(
− r2

4ηt

)
, (17)

Ud(r, t) =
C0ω

2
Ar2

2η
E1

(
− r2

4ηt

)
, (18)

where E1 is the exponential integral. The diffusive solution
applies only to early times, just after the enhancement of the
resistivity.

B. The solution

Equations (10) and (11) are solved numerically using expres-
sions (17) and (18) as initial conditions. The equations are re-
formulated in terms of the logarithmic variable R = ln(r/`η),
for which r(∂/∂r) = ∂/∂R is a simple derivative.16, 17 (Since
we use `η as the unit, this logarithmic variable is also written
simply as ln r). The two functions are represented on uniform
staggered grids in R. The two equations are advanced alter-
nately and the diffusive term is advanced implicitly in an oper-
ator splitting method. The solution is begun with expressions
(17) and (18) at some time safely within the diffusive regime:
typically t = 0.001/ωA. The grid extends from R = −7 to
R = 20, which is more than 11 orders of magnitude in radius
(r = `ηe−7 to r = L = `ηe20) but does not include the origin.
At the left edge (R = −7) velocity and current are set to zero.
At the right edge, R = 20, U = 0 and ∂C/∂R = 0, but the
run is stopped before the disturbance reaches this boundary.

Figure 2a shows the solution C(r) at successive times. The
diffusive solution, Cd (dashed) is a good approximation until
t ' 0.5/ωA. After that time the right portion of the curve
begins to resemble the outward-propagating wave solution of
Eq. (13). The transition from diffusive to propagating behavior
is clearly seen in Fig. 2b showing the location where C(r, t) =
2
3C0 as a function of time.

The emerging wave nature of the solution is evident in Fig.
3, which shows both C(r, t) and U(r, t). Outside of the dif-
fusion region, ln r > 0, the velocity variable U(r, t) begins to
grow and resemble a right-ward moving pulse complementary
to C(r, t). The sum C + U/ωA (not shown) is almost exactly
flat over the region ln r > 0. Uniformity of this sum is a prop-
erty of an outward propagating solution (upper sign) in Eqs.
(13) and (14).

The basic behavior evident in the solution is that the current
formerly concentrated at the X-point has diffused outward and
then propagated away as a FMS pulse. The pulse contains a
significant fraction of the initial current in a narrow, but not
infinitesimal, sheath. The shape of C is not dispersed in the
variable ln r, so the width of the actual sheath is proportional
to radius.

In its wake the pulse leaves a flow whose sense, U > 0, is
that required for reconnection at a horizontal current sheet: in-
ward along the y-axis and outward along the x-axis. The flow
is relatively steady in spite of the transient nature of the wave
which established it. In addition to the rightward propagation
of the wave, the flow field encroaches slowly toward the origin
(leftward). We show below that this is the result of advection
from the wave interacting with diffusion.

C. The reconnection rate

The outward propagating pulse sets up an approximately
steady reconnection flow, whose effect at the X-point is illus-
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(a)

(b)

FIG. 2. The solution of the current C(r, t). (a) Plots of the solution
at successive times displaced vertically for clarity. These are at times
ωAt = 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 7.5, 10 from top to bottom.
For each curve the left side is at C = 0 and the right is at C = C0,
and a symbol marks C = 2

3
C0. Dashed curves show the diffusive

solution, Cd(r, t) for the first several times. (b) The location C =
2
3
C0 as a function of time (solid). Symbols correspond to the times

from (a). The dashed curve is the diffusive motion: rd =
√

4ηt ln 3.
Dotted line is the wave motion, rw = `ηeωAt.

trated by the flux function. We calculate A from the numerical
solution

A(r, t) =
∫ L

r

C(r′, t)
dr′

r′
, (19)

where L = `ηe20 is the the outer (right) boundary. Figure 4
shows these curves at successive times (right) as well as its
value at the left of the grid, used as a proxy for the X-point:
' A(0, t).

During the initial phase, t < 0.5/ωA, the curve follows the
purely diffusive behavior

A(0, t) ' A(0, t0)− 1
2C0 ln(t/t0) , (20)

predicted from the Ohmic electric field at the X-point:
∂A/∂t = −ηJ , with J from Eq. (16).

The electric field is, however, determined by the wave so-
lution. The magnetosonic pulse is approximately a sheath of
current at a radius s moving outward (∼ eωAt). This sheath

FIG. 3. Plots of the functions C(r, t) (top) and U(r, t) at the same
times as in Fig. 2. Successive times are plotted on the same axis, but
generally run from left to right.

possesses a current C(r) = C0Θ(r−s), where Θ is the Heav-
iside function. It thus creates a flux function A = C0 ln(L/s)
inside the sheath (r < s) according to Eq. (19). The result is
that the flux function is relatively flat inside the sheath with a
level that decreases linearly with time, as seen in Fig. 4.

This latter behavior, driven by the outer wave-solution,
would seem to be inconsistent with the diffusive solution
near the origin. The secular decrease mandated by the wave
requires a persistent, roughly constant electric field, E =
−∂A/∂t, at the X-point. This is at odds with the decreasing
electric field of the diffusive inner solution.

The resolution of the paradox comes from a third regime,
suggested in a plot of the current density, J(r, t) =
r−1∂C/∂r, shown in Fig. 5. The current density initially
tracks the diffusive behavior of (16), broadening over time and
diminishing in amplitude to preserve total current. The peak
amplitude (left) initially decreases [J(0, t) ∼ 1/t], following
the dashed line. At t ' 0.5/ωA, however, this behavior ceases
and the peak remains at J(0, t) ' C0/`2η . At the same time
the profile (right) stops spreading outward and actually begins
to contract toward the origin.

This new regime in the solution is characterized by a bal-
ance between diffusion and wave advection which occurs near
the X-point at times t > 0.5/ωA. Under this balance, the term
on the left of (10) is negligible, leaving

0 = r
∂

∂r
(U + ηJ) . (21)

The solution to this consistent with U(0, t) = 0 is

U(r, t) = η[J(0, t) − J(r, t) ] . (22)

Placing this into Eq. (11) leads to a differential equation for
J(r, t) in the vicinity of the X-point

∂J

∂t
+

ω2
Ar2

η
J = Jt(0, t) , (23)

where the subscript here denotes partial differentiation. This is
an ordinary differential equation at each radius, whose general



Draft: 16 November2007 Longcope & Priest 6

FIG. 4. Plots of the flux function A(r, t) calculated from the
numerical solution. (right) Plots of A(r) at times, ωAt =
0.01, 0.03, 0.1, 0.3, 1, 2, 4, 6, . . . reading from top to bottom.
(left) The value of A at the left grid point versus time (in units of
1/ωA). Symbols on the curve correspond to the curves from the right
panel. The dashed curve shows the purely diffusive behavior of Eq.
(20).

solution, beginning at some time t0, is

J(r, t) = J(r, t0) e−ω2
Ar2(t−t0)/η

+
∫ t

t0

Jt(0, t′) e−ω2
Ar2(t−t′)/η dt′ . (24)

It is evident from the numerical solution that after time
t = t0 = 0.5/ωA the current at the X-point remains roughly
constant. This means that Jt(0, t) ' 0 for t ≥ t0, and the
second term on the right of (24) can be dropped. We may fur-
thermore use the purely diffusive solution, (16), for J(r, t0),
to get

Ja/d(r, t) =
C0ωA

η
exp

(
−ω2

Ar2t

η

)
, (25)

for t > 0.5/ωA. We refer to this as the advective/diffusive
solution. The remaining functions corresponding to it are

Ca/d(r, t) =
C0

2ωAt

[
1− exp

(
−ω2

Ar2t

η

)]
(26)

Ua/d(r, t) = C0 ωA

[
1− exp

(
−ω2

Ar2t

η

)]
(27)

The solutions from the new regime, (25)–(27), explain the
behavior observed in Figs. 4 and 5. The current density re-
mains roughly constant, Ja/d(0, t) = C0/`2η , but is restricted
to a shrinking region:

r < ra/d =
`η√
ωAt

. (28)

The electric field on the axis, ηJa/d(0) ∼ C0ωA, remains con-
stant, causing the secular decrease in the flux function after
t ' 0.5/ωA. Since the persistent electric field is independent

FIG. 5. Plots of the current density, J , at the same times shown in
Fig. 4. (right) The profiles at successive times. Dashed lines show the
diffusive solution, Eq. (16). (left) The current density on axis, J(0, t),
plotted versus time on a logarithmic scale. The diffusive solution is
plotted with a dashed line.

of η, the regime represents truly fast reconnection. In retro-
spect this is inevitable since the internal solution must match
an external solution in which η plays no role.

The flow field Ua/d, in Eq. (27), has a fixed maximum,
but encroaches inward as ra/d ∼ t−1/2. This progression
was noted in Fig. 3. While the same regime was studied by
Hassam,17 his solution began at the exterior and was therefore
never able to create current at the X-point. Consequently, he
observed the regime as a slow (non-exponential) decay in cur-
rent there, rather than a persistent current.

D. Approximate analytical solution

It is possible to approximate the complete solution analytically
by combining the elements of analysis presented above. Prior
to t = 0.5/ωA the entire solution behaves diffusively and is
well described by Eqs. (16)–(18). After that time the internal
solution, for r < r0, some fixed radius, will follow Eqs. (25)–
(27). The solution external to this will be a traveling solution,
like Eqs. (13)–(14), whose function F (x) is set to match the
inner one. In particular

C(r0, t) = C0 − F (ωAt− ln r0) = Ca/d(r0, t) . (29)

Setting this equal to (26) gives a function

F (x) = C0− C0

2(x + ln r0)

{
1− exp

[
−ωA(x + ln r0)r2

0

η

]}
.

Using this in the solutions yields the outer analytic solutions

Ca(r, t) =
C0

2(ωAt− ln r/r0)
×

×
{

1− exp
[
− (ωAt− ln r/r0)r2

0

η

]}
,(30)

which applies to r < r0e
ωAt. Beyond that radius C = C0

since the disturbance has not yet reached it.
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Figure 6 shows the numerical solutions from Fig. 2, along
with the analytic approximation Ca (dashed), using r0 =
0.25`η . The fit is reasonably good for all the times. Times
near t = 1/ωA represent the merging of the two regimes and
thus are fit the worst.

FIG. 6. The numerical solution C(r, t) at various time, as in Fig. 2.
Here the analytic approximation, Ca(r, t) from either (17), (26) or
(30) are shown as dashed curves.

Diffusive effects become increasingly irrelevant as the pulse
moves outward. Thus we expect the true solution to follow this
behavior even beyond the extent of our numerical grid. Fur-
thermore, the advective/diffusive solution, given by Eqs. (25)–
(27) appear increasingly accurate at later times. We therefore
have a good approximation to the complete solution valid at
least until the assumption of linearity fails (to which we return
below).

IV. ENERGETIC CONSEQUENCES

The magnetic and kinetic energy of the m = 0 perturbations,
between radii a and b are

Wm = 1
4

∫ b

a

C2 dr

r
. (31)

Wk = 1
4 ω−2

A

∫ b

a

U2 dr

r
. (32)

The time derivative of the sum of these energies can be rewrit-
ten in the form

d

dt
(Wm +Wk) = 1

2C(U + ηJ)
∣∣∣
b

a
− 1

2η

∫ b

a

J2 r dr . (33)

The first term on the right of (33) represents Poynting flux into
or out of the annular region. The second term, which is never
positive, is the Ohmic heating loss.

Figure 7 shows the profiles of both the Poynting flux, C(U+
ηJ) and the logarithmic density of Ohmic dissipation, ηr2J2

computed from the numerical solution. The Ohmic dissipation
is plotted on a logarithmic scale since it drops dramatically af-
ter t = 1/ωA. The roughly constant current carried outward

by the magnetosonic pulse is distributed over a homologously-
expanding sheath causing J ∼ r−2. The dashed line in Fig.
7 confirms this tendency showing that ηr2J2 ∼ r−2. Mean-
while the inner advective/diffusive solution, characterized by
J ∼ C0/`2η , contributes a factor ∼ r2 to the heating density
(broken line). As a result there is very little Ohmic dissipation
after the diffusive phase ends.

FIG. 7. Plots of the contributions to the changes in total energy at
successive times. Times ωAt = 0.1, 0.3, 1, 3, 5, 7.5 and 10 are
plotted a common axis, progressing from left to right. (top) The den-
sity in R of the Ohmic loss term: ηr2J2 on a logarithmic scale. The
dashed and broken curves show r−2 and r2 for reference. (bottom)
The Poynting flux C(U + ηJ).

The Poynting flux, plotted on the bottom of Fig. 7, shows
a shifting of energy first inward, then outward. In the wave-
dominated region it becomes a simple positive pulse traveling
outward without diminishing. A particular annulus at r À `η

will first experience an energy decrease as this pulse crosses
its inner boundary (only the lower limit in Eq. [33] will con-
tribute). This inward flux is natural since the initial diffusion
left a deficit of magnetic pressure at the X-point. After its lead-
ing edge passes the outer radius the pulse’s negative slope will
produce an energy increase within the annulus (the upper limit
exceeding the lower limit in Eq. [33]). In the end the Poynting
flux term goes back to zero, so it will not have changed the net
energy in that annulus.

While the magnetosonic pulse does not increase or decrease
net energy, it does produce a significant energetic effect. Fig-
ure 3 clearly shows that C is decreased and U is increased in
the wake of the leading edge. According to Eqs. (31) and (32),
this reflects a conversion of magnetic to kinetic energy. A plot
of the total kinetic energy within the numerical grid (Fig. 8)
confirms this. The kinetic energy increases linearly in time
once the wave nature of the solution has becomes established
(t > 1/ωA). This is another manifestation of the persistent re-
connection flow left in the wake of the moving current sheath.

It is noteworthy that the Ohmic heating is a minor factor
in the energy budget after the dissipative phase. Our solution
began as an infinitely thin wire, whose initial diffusion liber-
ates an infinite amount of energy. To accommodate this artifi-
cial initial state, Fig. 8 plots the integral of Ohmic dissipation
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FIG. 8. The kinetic energy and integrated heating loss plotted versus
time. The inset is an expansion of the early phase which includes the
diffusive regime. The heating loss is integrated from t = 1/ωA, and
is therefore negative for t < 1/ωA.

forward from t = 1/ωA. The curve therefore diverges, loga-
rithmically, in the negative sense as t → 0. Had we used the
actual current sheet as an initial condition there would be no
divergence, in spite of the singular current density. The Ohmic
dissipation cannot release more than the finite magnetic energy
density in the neighborhood of the current sheet: ∼ ln(`η/∆).
This entire conversion would occur in about the same time in-
dicated by Fig. 8: ∼ 1/ωA.

After the initial diffusive phase the magnetic energy is con-
verted almost entirely to kinetic energy. This occurs in spite
of the persistent electric field at the X-point. That electric field
continues to transfer magnetic flux at the Alfvénic rate, but
does so with very little energy dissipation. While the current
density at the X-point remains fixed, it is confined to a shrink-
ing region, and therefore accounts for an ever decreasing net
current I = 2C(0) ∼ 1/t. The net electrodynamic work done
by the electric field therefore becomes logarithmic, as the fig-
ure shows.

The persistent X-point current stores a residual magnetic en-
ergy. The magnetic energy inside the diffusion radius

Wx ∼ I2(t) ln(`η/ra/d) ∼
ln(ωAt)

t2
, (34)

diminishes rapidly due to the diminishing current, in spite of
its concentration toward the origin. The Ohmic dissipation
power, Pη = EI ∼ 1/t, small as it is, cannot be supplied by
this residual magnetic energy. Instead the dissipated energy
must be supplied by the encroaching flow.

Meanwhile the outward propagating magnetosonic pulse
continues to transform magnetic energy in the far field into
kinetic energy. We began our discussion by noting the ex-
tensive (potentially infinite) magnetic energy available in the
m = 0 component of the magnetic perturbation. Adding the
two curves in Fig. 8 to the total magnetic energy within the
numerical solution does yield a constant value. The system
conserves total energy, at least until the solution encounters
one of the boundaries.

V. LIMITATIONS OF THE MODEL

A. Breakdown of linearity

The foregoing analysis was performed after dropping from the
MHD equations all non-linear terms. We now check this as-
sumption by estimating the magnitudes of the neglected terms.
The ratio of the perturbation field to the equilibrium field will
be largest near the X-point, where the equilibrium field van-
ishes. Using the diffusive solution, (17), in the vicinity of the
origin gives a ratio

|B1|
|B0| ∼

C(r)
r2ω2

A

√
4πρ0

' ε

2ωAt
, (35)

where we have introduced the dimensionless amplitude

ε =
I0

η
√

4πρ0
=

1
4

∆2

`2η
. (36)

The denominator in the second expression of (36) is a cur-
rent, Isp = η

√
4πρ, characteristic of the diffusive plasma.

The Lundquist number at the original current sheet is20 S∆ =√
I0/Isp. The current sheet, and thus the perturbation, is gen-

erally small if it carries a net current much less than Isp. A
restatement is that the resistive enhancement must increase Isp

to a level much larger than the current in the sheet. This also
means, not coincidentally, that the initial sheet underwent dif-
fusion at a very small Lundquist number S∆ = ε1/2 ¿ 1.

Even if ε ¿ 1, it would appear at first sight, from Eq.
(35), that the linear approximation fails during early times,
ωAt ¿ ε. Indeed, a current sheet creates a finite magnetic
field which cannot be considered as a small perturbation to the
vanishing magnetic field of the X-point; a wire creates an in-
finite field, making matters still worse. During the early times
being considered, however, the evolution is dominated by dif-
fusion which involves two inherently linear terms. In that case
the appropriate comparison is between the neglected nonlin-
ear term and the diffusive one. This is equivalent to the ratio
of electric fields

|v1 ×B1|
ηJd

∼ |B1|
|B0|

Ud

ηJd
∼ ε

(
r

`η

)2

E1

(−r2

4ηt

)
er2/4ηt ,

which is ∼ ε even as r → 0 or as t → 0. Thus the diffusion
of the intense currents overwhelms any potential non-linear
effects, at least in the early stages.

At later times the solution enters its advective/diffusive
regime for which |B1|/|B0| ∼ ε. As long as the initial current
sheet was small enough, the magnetic field will remain suffi-
ciently small that it will never produce appreciably non-linear
effects.

Non-linearities might still arise from the velocity, which
grows over time. The magnitude of v1 can be estimated from
U as

|v1| =
U

|B0| = ε
U

C0

η

ωAr

' ε
η

r

[
1− exp

(
−ω2

Ar2t

η

) ]
, (37)
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after using the advective/diffusive form of U , from Eq. (27).
At a given time, t, the maximum velocity

max|v1| ' 0.638 ε `η ω
3/2
A t1/2

occurs at rmx ' 1.12ra/d. This location moves towards the
origin, rmx ∼ t−1/2, even as it grows (see Fig. 9).

FIG. 9. Plot of the velocity field at the same times from Fig. 2. Peaks
are marked and the corresponding times are listed along the right.
The dashed line shows the curve 1/r for reference.

As the peak velocity increases ever closer to the X-point,
it will eventually exceed the local Alfvén speed of the back-
ground field. The ratio of these two

|v1|
vA,0

= ε
U

C0

η

ω2
Ar2

' ε ωAt , (38)

after using the advective/diffusive solution, is obviously an in-
creasing function of time. By the time ωAt ∼ ε−1, the ratio
will exceed unity and the linear approximation will have failed.
The failure is due to the neglected inertial term becoming com-
parable to the Lorentz force in the momentum equation.

The continuity equation is not relevant at the linear order
due to our assumption that β = 0. Perturbations to den-
sity will, however, enter higher order terms of the momentum
equation. The lowest-order source term in the continuity equa-
tion, ρ0∇ · v1, will have an m = 2 azimuthal dependence (i.e.
∼ e2iφ), from v1. This means that first-order perturbations
to density will have m = 2 and will therefore not directly
affect the governing Eq. (11). Any effect from density pertur-
bation will need to enter at still higher order. For example, the
second-order perturbation to density is driven by terms such
as ρ1∇ · v1, which will affect the m = 0 governing equa-
tions. Such extensive non-linear analysis is, however, beyond
our present scope. We expect that such analysis would recon-
firm a breakdown at t ∼ (εωA)−1 as already found.

B. Effect from large scales: reflection

The X-point external field represents the immediate neighbor-
hood of the magnetic neutral point on which the current sheet
initially formed (Fig. 10 illustrates this in an example from the

solar corona). That field, B0 = −B′(yx̂ + xŷ) is the lowest
order from an expansion in powers of r. Fast modes propa-
gating away from it will eventually reach radii where higher
orders of the expansion become appreciable. These departures
will affect the axisymmetric dynamics near the X-point (i.e.
the reconnection) if they lead to reflection of m = 0 distur-
bance.

FIG. 10. An illustrattion of a quadrupolar field in the solar corona
containing a null point. The local environment of the null point
(dashed circle) resembles the X-point field.

The simplest means of incorporating reflection into the
CMH model is by a rigid, conducting boundary at some ra-
dius r = L — the approach taken by Craig and McClymont16

and Hassam.17 This boundary introduces a second length scale
and a characteristic Alfvén speed, vA,0 = ωAL, for which the
Lundquist number is S = ωAL2/η = (L/`η)2.

The perturbation from reconnection will first reach the
boundary at

t = τd =
ln(L/`η)

ωA
=

1
2

ln S

ωA
, (39)

the same time scale found by CMH. A reflection will then
reach the X-point once more at 2τd, where it will presumably
interact with the advective/diffusion solution there.

The rigid, conducting boundary requires conditions U = 0
and ∂C/∂r = 0 at r = L — the same conditions used in
our simulation. The second condition is required by the first
combined with Eq. (11). In place of the second one, CMH ap-
plied the condition A1(L) = 0. That condition is not pertinent
to our simulation since it is automatically satisfied when A is
found from C according to (19).

To see the nature of reflections due to these conditions we
add to the outward-traveling (upper sign) waves of Eqs. (13)
and (14), an inward-traveling wave with undetermined shape
function G(x):

C(r, t) = C0 − F (ωAt− ln r)−G[ωAt + ln(r/2L)] , (40)
U(r, t) = ωAF (ωAt− ln r)− ωAG[ωAt + ln(r/2L)] . (41)

The condition U(L) = 0 is satisfied by setting G(x) = F (x),
meaning that the wave reflects without changing shape. Since
these functions appear with opposite signs in (41), the electric
field is reversed upon reflection. The choice G(x) = F (x)
also satisfies the other boundary condition since

∂C

∂r

∣∣∣∣
L

=
1
L

F ′(ωAt− ln L)− 1
L

G′(ωAt− ln L) = 0 .
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Well after the incident and reflected waves have both passed
a point r, the values there will be F ' G ' C0. Using this in
Eq. (40) yields C ' −C0, so the current inside r has changed
sign. The conducting boundary reflects the current sheath back
toward the X-point but with a change of sign.

Figure 11 shows a numerical solution inside a rigid conduct-
ing boundary at L = e14`η . This location makes S ' 1012

roughly characteristic of Spitzer resistivity in the solar corona.
Unlike the solution from previous sections this one contin-
ues even after the disturbance reaches that outer boundary.
The current, C, enclosed by the outer boundary becomes sud-
denly negative at t = 14/ωA. This reflected current sheath
reaches the diffusive region (r < `η), reflects without chang-
ing sign16, 17 and reaches the outer boundary once more at
t ' 42/ωA.

FIG. 11. Plots of the numerical solution inside a rigid, conducting
wall at r = L = `ηe14. This radius was chosen to yield a Lundquist
number of S = e28 ' 1012. Time axes are given in units of 1/ωA

(upper) and 1/τd (lower). (top) The net current enclosed by the
outer boundary C(L) (solid). The dashed curve is a fit of the form
cos(Ωt)e−γt, to t > 10τd. (bottom) The current density at the origin,
J(0) (solid), and a repeat of C(L) (dashed).

The studies of CMH16, 17 showed that the diffusive region
reflects an incoming pulse with some dispersion and dissipa-
tion. Owing to the dispersion, oscillations become more si-
nusoidal over time. Owing to the dissipation and dispersion,
the oscillations decay toward C = 0. In the end all of the
magnetic energy is converted to heat, provided the X-point is
surrounded by a perfectly circular, rigid conducting boundary.

The damped sinusoid in the long-time limit will correspond
to the eigenfrequency with the smallest decay rate. Times af-
ter 10τd (τd given by Eq. [39]) fit a damped sinusoid with
complex frequency, ωτd = 1.45 − 0.080i (dashed curve in
the upper panel). This is very close to the value at the same
Lundquist number, ωτd = 1.38 − 0.078i, found analytically
by Hassam.17

The lower trace in Fig. 11 shows the current density at the
X-point. Its initial behavior follows the analysis from the pre-
vious sections: initial decay followed by a return to a constant
value during the advective/diffusive phase. The arrival of the
reflected pulse at t = 28/ωA injects opposing current into the
X-point. This overwhelms the small peak remaining from the

initial current sheet, driving J(0) negative. Indeed, each sub-
sequent reflection changes its sign once more and J(0) under-
goes damped oscillations which lag those of C(L) by 90◦. One
complete cycle requires two complete reflections and therefore
takes 4τd.

The initial reflection will reverse the process of energy con-
version. On the outside of the reflected sheath, C = −C0 and
U = 0, so there is magnetic energy and little kinetic energy.
This restored situation will persist until the sheath reflects once
more from the X-point and magnetic energy is once again con-
verted to kinetic energy. The rigid conductor creates a cavity
oscillator with damping from dissipation at the X-point. This
was the finding of the CMH studies.

A perfectly circular boundary is an artificial representation
of the effects reflections might have in a realistic situation,
such as Fig. 10. A boundary which is not perfectly circular
will tend to reflect and “scatter” the disturbance into other az-
imuthal modes m 6= 0. The m = 0 component of the reflection
will thus be much smaller and will not completely reverse the
effects of the outgoing wave. The flow established in the wake
of the outgoing wave would not be canceled by an equal and
opposite reflection. Instead, reflected waves with other spatial
structure would interact with the outgoing wave in complex
patterns. The resulting dynamics could probably be described
as phase mixing as the many eigenmodes initiated by the initial
disturbance became dephased with one another. Those with
m 6= 0 have little amplitude near the X-point and hence would
be only weakly damped. The main mechanism for damping
would probably resemble the phase-mixing mechanism stud-
ied by Heyvaeerts and Priest.21 and others.22, 23 If this were
the case, the energy liberated by the reconnection would be
dissipated over a volume much larger than the X-point.

Along the same reasoning, waves reflected by a non-circular
boundary will not converge uniformly on the X-point. The
result would perhaps resemble studies by McLaughlin and
Hood24, 25 of multi-mode disturbance interacting with an X-
point. It is not clear how much of the advective/diffusive solu-
tion at the X-point would be affected by this kind of reflection.

VI. DISCUSSION

One of the most challenging aspect of magnetic reconnec-
tion is that microscopic processes, such as diffusion, couple
to global scales. The foregoing model, while highly ideal-
ized, provides a tractable illustration of this coupling between
the fundamental processes of diffusion and wave propagation
(normally studied separately). Diffusion disrupts the current
sheet and drives current to a radius where magnetic forces can
take effect. These forces create an inflow and outflow pattern
which propagates away from the X-point as a FMS wave.

The magnetosonic wave launched by the X-point reconnec-
tion communicates changes in the sheet’s current to the global
field. The m = 0 component of the wave, considered here, is
a concentric sheath of current approximately matching the net
current in the sheet. The field inside this sheath is therefore
much closer to potential, so magnetic energy has been low-
ered.
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The magnetosonic wave propagates at the Alfvén speed in-
dependent of the resistivity. In order to accommodate these
fast dynamics it is necessary to transfer flux across the X-point
at a rate also independent of resistivity. This is accomplished
by a current density peak of steady amplitude, J ' E/η, but
diminishing area. This peak is maintained against diffusion by
a flow field encroaching toward the X-point. The persistent
X-point electric field continues flux transfer but accomplishes
little energy dissipation.

We have used an enhanced resistivity as a simple model
of transient reconnection. This model can be solved, self-
consistently, as a linear system povided the enhanced resitivity
is sufficiently large compared to the initial net current in the
sheet (i.e. ε ¿ 1). A more realistic scenario might involve
non-linear, turbulent processes occurring within the current
sheet itself. If the turbulence is sufficiently intense it might
have an effect similar to the resistivity of our model, and lin-
ear analysis of all three regimes could once more be justified.

For sheets carrying larger initial current, or lower levels of
resistivity (i.e. ε > 1), the linear approximation would fail.
This is the case for current sheets whose Lundquist number,
even using enhanced diffusion, is large: ε ∼ S2

∆ À 1. Recon-
nection at such a current sheet will involve complex non-linear
dynamics, such as outflow jets or tearing modes, significantly
different from the simple diffusion of our model. The diffusive
and advective-diffusive regime from our study will therefore
be inapplicable.

Even when the linear approximation does not apply we ex-
pect the response of the far field to resemble that from our
model. The complex dynamics at the current sheet will ulti-
mately transfer flux and diminish the current in the sheet, al-
though possibly only by a fraction. Accommodating this rel-
atively sudden change at great distances requires waves prop-
agating outward from the reconnection site, regardless of the
reconnection details. By altering the magnetic field far beyond
the current sheet itself these wave-mediated changes remain
the primary mode of energy release. They are a consequence
of magnetic reconnection, and do not depend on whether the
reconnection occurs through resistivity (as we have assumed)
or by other possibly more complicated means.

The basic picture emerging from our model is one of a lo-
cal reconnection process initiating a global process of energy
release through magnetosonic waves. The behavior of these
waves in a more realistic scenario needs to be studied in a
more realistic model. A perfectly concentric rigid boundary
probably over-estimates the effects of reflection, for reasons
we describe above. Moreover, there is a segregation, in two di-
mensions, of FMS waves from Alfvén waves, which is not as
clear in models with more realistic three dimensional geome-
try. In such geometries Alfvén modes are likely to be initiated
as well, and these are trapped by closed magnetic field lines
much more readily than FMS waves. This might be relevant to
recent observations of oscillating loops in the solar corona, ap-
parently triggered by reconnection and/or solar flares.26, 27, 28

Extension to more realistic geometry will probably require
that a particular plasma regime be specified. The simple X-
point considered in our model is common to reconnection in
the solar corona, the magnetosphere, and many astrophysi-
cal contexts. Reconnection occurs in these plasmas rapidly

after some period of slow energy storage. Our model pro-
vides an abstract picture of how the localized process of time-
dependent magnetic reconnection can initiate the release, by
wave-propagation, of magnetic energy stored throughout a
large-scale field.
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