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ABSTRACT

We use two different models to study the evolution of the coronal magnetic

field which results from a simple photospheric field evolution. The first, the Mini-

mum Current Corona (MCC), is a self-consistent model for quasi-static evolution

which yields an analytic expression approximating the net coronal currents and

the free magnetic energy stored by them. For the second model calculation, the

non-linear, time-dependent equations of ideal magnetohydrodynamics are solved

numerically subject to line-tied photospheric boundary conditions. In both mod-

els high current-density concentrations form vertical sheets along the magnetic

separator. The time history of the net current carried by these concentrations is

quantitatively similar in each of the models. The magnetic energy of the line-tied

simulation is significantly greater than that of the MCC, in accordance with the

fact that the MCC is a lower bound on energies of all ideal models. The difference

in energies can be partially explained from the different magnetic helicity injec-

tion in the two models. This study demonstrates that the analytic MCC model

accurately predicts the locations of significant equilibrium current accumulation-

s. The study also provides one example in which the energetic contributions of

two different MHD constraints, line-tying constraints and flux constraints, may

be quantitatively compared. In this example line-tying constraints store at least

an order of magnitude more energy than do flux constraints.

Subject headings: MHD — Sun: corona — Sun: magnetic fields
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1. Introduction

The low solar corona is a strongly magnetized (β � 1) plasma with extremely high resis-

tivity (Rm� 1). Sequential coronal images made in soft X-ray or extreme ultraviolet reveal

only minor changes in much of the low corona over times far greater than typical Alfvén

wave transit time. For these reasons it is commonly believed that the coronal magnetic field

is in force-free magnetic equilibrium most of the time (Gold & Hoyle 1960; Gold 1964). It is

further assumed that this field is “anchored” to the photosphere where magnetic field is con-

fined to localized regions by plasma pressure and convection-driven flows. The photospheric

flux evolves slowly, thereby causing the coronal field to change in response. This leads to the

widely-held picture that the coronal field evolves quasi-statically in response to photospheric

driving.

Non-resitive (ideal), quasi-static evolution driven by footpoint motion will naturally

increase the magnetic energy of the coronal field. This energy storage process has been

investigated in numerous two-dimensional models (Low 1977; Mikic et al. 1988; Klimchuk

et al. 1988). Due to the difficulty in treating realistic three dimensional geometries (it is

especially difficult analytically) analogous models are not often applied to observations. As

a result, while it is conceded that photospheric motions are generally sufficient to power

observed coronal activity (Gold & Hoyle 1960), the power cannot be quantified in specific

cases.

In a complete model of coronal activity the magnetic energy which has been slowly

stored by photospheric motion must be rapidly released (converted from magnetic energy

to other forms such as kinetic energy of bulk motion) and then dissipated (converted to

heat or radiation). Modeling this rapid release, following slow storage, has proven to be

a major challenge for coronal physics (see Klimchuk 2001, for a lucid review of various

models of storage and release in coronal mass ejections). Magnetic reconnection was invoked

as a mechanism of energy dissipation and release by Sweet (1958a) and Parker (1957) in

pioneering work. Much of the theoretical investigation which followed this has focused on

the local geometry of the reconnection region, and thus is difficult to reconcile with inherently

global models of energy storage. In recent theories of fast reconnection, non-ideal effects are

very localized, and therefore dissipate negligible energy directly (Biskamp & Schwarz 2001).

Without a global context it is not clear how such a localized reconnection process can release

so much more energy than it can dissipate. How can energy which is stored throughout the

coronal volume be released by reconnection in a tiny region, through which passes only a

small fraction of the field lines?

The Minimum Current Corona (MCC, Longcope 1996, 2001) is a recent, self-consistent,

analytic model of quasi-static evolution in three-dimensional magnetic fields of arbitrary
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complexity. The model simplifies the full equations of ideal magnetohydrodynamics (MHD)

using two basic assumptions. Its first assumption, the discrete-source assumption, holds that

the photospheric field comprises isolated unipolar sources separated by a contiguous region

of zero vertical flux (the sources need not be point charges, but in many applications they

are). As a direct consequence of the discrete-source assumption each coronal field line may

be assigned to one of a countable set of flux domains according to the source regions at each

of its two footpoints. The interfaces between domains are separatrices, which intersect along

separators. Together the separatrices and separators form the skeleton of the field (Priest

et al. 1997; Longcope & Klapper 2002) which describes the field’s connectivity. The number

of field lines connecting photospheric sources Pi and Nj is quantified by the magnetic flux

in that domain, called the domain flux ψij .

The second assumption of the MCC, the FCE-assumption, is that the corona evolves

quasi-statically through a sequence of force-free states called flux constrained equilibria

(FCEs). A flux constrained equilibrium is that field with the lowest magnetic energy which

both matches the photospheric boundary and contains a prescribed distribution of domain

fluxes (Longcope & Klapper 2002). Remarkably, the field resulting from this minimization

is current-free with the exception of current sheets along each and every one of the field’s

separators (Longcope 2001).

The MCC assumes, in particular, that the coronal field evolves through those FCEs

which hold all domain fluxes constant even as the photospheric flux distribution changes.

This evolution is consistent with ideal MHD for some finite plasma velocity, since there

is no need for field lines to change topologically or move at infinite speed as they would

if footpoints jumped between source regions (Longcope & Cowley 1996). The evolution

does require specific footpoint motions within each source region which would, in general,

differ from any specified photospheric motions. Therefore, the MCC is inconsistent with the

assumption of photospheric line tying.1

Line tying assumes that both footpoints of each field line are frozen to the photosphere,

and that the photospheric motion is unaffected by the coronal magnetic field, and therefore

may be considered to be prescribed. It can be shown that the energy stored by ideal, line-tied,

quasi-static evolution will always exceed the energy of the corresponding FCE (Longcope

2001). This means that the MCC may be used to provide a lower bound on the energy

stored by ideal quasi-static evolution under line-tied evolution. Moreover, all the free energy

1It has been argued that (see Longcope & van Ballegooijen 2002), at least for the smallest photospheric
flux concentrations, an assumption of perfect line-tying is no more physically plausible than the assumptions
of MCC.
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of the MCC may be released by making only topological changes to field lines in the vicinity

of the current sheet; i.e. by reconnection. This feature of the model follows simply from the

fact that FCEs are minima subject to constraints, and that these constraints are violated

(i.e. eliminated) by a field-aligned electric field at a separator. In this manner it is possible

for local topological changes of a few field lines to release energy which is stored globally

throughout the coronal volume. The MCC thereby provides a self-consistent model of energy

release by magnetic reconnection in three-dimensional fields of arbitrary complexity.

For all of the above reasons the MCC is a powerful tool for modeling realistic coronal

magnetic fields. Provided that observed photospheric fields may be approximated as discrete

sources, the MCC permits ready calculation of a lower bound on the free magnetic energy

stored by ideal coronal evolution driven by observed photospheric evolution. It also provides

a lower bound on the energy liberated by reconnection at a small number of topologically

significant locations: the separators.

While the MCC is self-consistent given its assumptions, it is not consistent with ar-

bitrary line-tied photospheric motions. Photospheric line tying is commonly used in MHD

simulations, so the MCC will not exactly match their results. The MCC does still pro-

vide a lower bound on their free magnetic energy (provided they have zero resistivity), and

may still serve as an approximation of the simulated evolution. It is not, at present, clear

how reliable an approximation the MCC is to line-tied evolution. Indeed, simulations of

quasi-static coronal evolution driven by line-tied photospheric motions have shown qualita-

tive similarities with MCC, including a tendency for large current densities to develop along

the magnetic separator (Galsgaard et al. 2000). These results do not, however, quantify the

accuracy of the MCC as an approximation for line-tied evolution. Nor have they led to an

estimate of how much greater is the free energy of the line-tied field than that of the lower

bound, the FCE.

Line-tied resistive simulations differ from both of the ideal cases in still other respects.

First of all, since resistive simulations are necessarily dynamic, their energetics will depend

on the rate of photospheric driving, in contrast to quasi-static models. As outlined above,

ideal line-tied simulations accumulate currents both distributed within domains and concen-

trated at domain interfaces. In the presence of resistivity both types of current will diffuse,

with the more concentrated interface currents diffusing most quickly. Their ultimate mag-

nitude will be determined by the balance between the rate of photospheric driving and the

rate of resisitve dissipation. Dissipation on even Sweet-Parker time scale would render the

interface currents relatively weak even when the system’s magnetic Reynolds number is many

thousand. The relative significance of interface currents at still higher values will depend on

how each of the competing rates, current concentration and magnetic reconnection, scales
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with Reynolds number. Before considering this dynamical problem, however, it is useful to

consider the quasi-static limit which is necessarily non-resistive.

This work presents a comparison of quasi-static coronal evolution according to the MCC

with that driven by line-tied photospheric motion in numerical simulation. The next section

presents the problem which will be solved using each model. Section 3 briefly reviews the

MCC and applies it to the problem. Section 4 describes the numerical simulation and presents

its results. Section 5 makes a comparison of the two, and explains the differences in terms

of the different motions of the photospheric footpoints in the two models. This difference is

quantified in terms of relative helicity injection. Finally, section 6 discusses the implications

of these results for understanding the quasi-static evolution of an arbitrary coronal magnetic

field.

2. The problem

We will study a magnetic configuration which is sufficiently complex that it contains a

separator. The simplest such configuration is an arrangement of four photospheric sources,

i.e. a general quadrupole (Sweet 1958b; Baum & Bratenahl 1980; Longcope 1996; Longcope

& Klapper 2002).2 We consider a family of such configurations in which each source is a disk

of radius a containing flux ±Φ0 symmetrically distributed as vertical field Bz, whose radius

of gyration is ā:

ā2 ≡ 2π

Φ0

∫ a

0

|Bz(r)|r3 dr ≤ a2 .

This configuration conforms exactly to the discrete-source assumption of the MCC. The

sources compose two dipoles, each centered at the origin, whose axes are mis-aligned with

one another by angle θ (see fig. 1). The separation between outer poles is 2d, while the inner

bipole is smaller by a factor ε < 1. We further assume the simplest coronal field topology

consisting of four flux domains, whereby each source is connected to both opposing sources.

There is therefore a single magnetic separator lying in the middle of the four domains.

2The same topology is possible for three sources whose net flux is not zero. In this case infinity functions
as a fourth “source” of flux.
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Fig. 1.— The generalized quadrupole consisting of four photospheric sources, P1, P2, N1

and N2. Each source is a disk of radius a and flux ±Φ0. The outer and inner dipoles have

separations 2d and 2dε respectively. The axes of the dipoles make an angle θ with respect

to one another.
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Our present investigation will follow the slow, dynamical evolution of the coronal mag-

netic field as the photospheric field progresses through a sequence of angles θ, beginning at

θ0 = π/4. The initial condition for this evolution will be a potential coronal field (∇×B = 0).

The outer sources, P2 and N2 will remain fixed while the inner bipole rotates about the

origin. We will further restrict consideration to an inner bipole parameter ε = 0.283. The

radius of the source regions, a, will be fixed during the evolution, however, we will have

occasion to consider several values including a = 0 for which the source regions are magnetic

point-charges. We characterize the photospheric evolution only by the motions of entire

source regions and not by the footpoint motions within a region; the two subsequent sections

differ principally in the internal motions they assume.

The initial (potential) magnetic field contains two null points, A1 and B2, both located

on the source plane, z = 0. The fan surfaces from these two null points form separatrix

surfaces which together divide the coronal volume into its four flux domains (Longcope &

Klapper 2002), designated by the source regions at each footpoint P1–N1, P1–N2 and so on.

The separatrices in this potential field intersect along a single curve, the separator field line,

which begins at B2 and ends at A1 (see fig. 2b). Adding a return path along the field-free

portion of the photosphere forms a closed curve Q enclosing all those field lines connecting

P1 to N1.3 The flux enclosed by Q, called Ψ(v)(θ0), is the flux of domain P1–N1 in the

initial field, which is a “vacuum” or potential magnetic field. For the case of point sources

(a = 0) this is Ψ(v) = 0.455Φ0, and we show below that this value changes little for finite,

uniform disks. This means that of the total flux Φ0 leaving sources P1, 45.5% connects to

N1 and 54.5% to N2.

3See Longcope & Klapper (2002) for a more detailed discussion of this calculational procedure.
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Fig. 2.— The initial coronal magnetic field. (a) The photospheric source regions with radius

of gyration ā = 0.375εd. Null points A1 and B2 are shown (triangles) along with their

spines (solid) and photospheric footprints of their separatrices (dashed). (b) Projection view

of the point-sources case (a = 0). Field lines from three domains are shown along with the

separator.
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Our goal is to characterize the coronal-field evolution as the photospheric sources move

in the manner described above. To capture the character of the actual solar corona in

a simplified model we take the coronal plasma to be perfectly conducting4 and to have

vanishingly small pressure (β → 0). We also consider the photospheric motion to be slow

relative to coronal Alfvén times, dθ/dt� vA/d. Under these conditions we expect the corona

to evolve through a sequence of magnetic equilibria characterized by the bipole-alignment

angle θ.

3. The Minimum Current Corona

According to both the MCC and line-tied, ideal MHD, the net fluxes in each of the

four flux domains will remain constant during evolution. Having established the flux of

one domain, say ψ11 = 0.455Φ0 in domain P1–N1, the values of the other three follow

immediately from the net source fluxes (Longcope 2001). For example ψ12 = Φ0 − ψ11 since

any flux leaving P1 which does not connect to N1 must connect instead to N2. This means

that the MCC evolution proceeds through equilibria for which the flux in domain P1–N1 is

fixed at ψ11 = Ψ(v)(θ0).

Calculating the domain fluxes in every potential field yields the function Ψ(v)(θ) = ψ11,

the flux linked by the separator pathQ in the vacuum (potential) field. Figure 3 shows Ψ(v)(θ)

for the case of point sources, a = 0, and uniform disks whose radii of gyration are ā = 0.375εd.

As θ increases Ψ(v) increases as well, as a natural consequence of the growing separation

between P1 and N2 making the alternate connection, P1–N1, increasingly “favorable”.

4The actual corona has a finite conductivity which is very large in the corona, and decreases in cooler
atmospheric layers. The magnetic Reynold’s number is sufficiently large, Rm ∼ 1010, that the assumption
of zero resitivity is frequently made.
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Fig. 3.— Characteristics of the potential fields as a function of mis-alignment angle θ for

point sources (a = 0 solid line) and disks (ā = 0.375εd, squares). The axisymmetric cases of

co-linear points, a = 0 and θ = 0 or π, are shown with ×s. (a) shows the flux Ψ(v) in domain

P1–N1, normalized to Φ0. The dashed line is the value Ψ(v)(θ0). (b) shows the characteristic

current I? normalized to Φ0/d. The dashed curve is 4π|∆Ψ|/L.
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The flux constrained equilibrium (FCE) will be a potential field only when the prescribed

flux inside separator loop Q, designated Ψ, matches that of the potential field Ψ(v)(θ). In

cases where it does not match, the equilibrium field will be current-free except for a current

ribbon forming the separator. This fact follows from the Euler-Lagrange equations resulting

from the energy minimization (Longcope 2001), although there few cases in which these

equations may be actually solved.

It is possible to estimate the properties of the current ribbon in cases where the flux

difference ∆Ψ ≡ Ψ− Ψ(v) is sufficiently small (Longcope 1996, and Appendix). Under this

assumption the current follows a path approximating the separator of the potential field, and

affects the field only in its immediate neighborhood. Furthermore, the width of the current

ribbon, ∆, is set by the current I and the potential field in the immediate vicinity of the

separator. The self-flux produced by this current ribbon can be written

Ψ(cr) =
IL

4π
ln(eI?/|I|) (1)

where L is the length of the potential-field separator, e = 2.718 is the base of the natural

logarithm. The current I? is a quantity, defined precisely in an Appendix, proportional the

average perpendicular magnetic shear along the potential-field separator.5 We show below

that a current sheet carrying |I| = I? will extend a width ∆ comparable to the diameter of

the loop.

The flux constraint requires that Ψ = Ψ(v) + Ψ(cr) from which we may solve for the net

current in the ribbon

I = I? Λ−1(4π∆Ψ/LI?) , (2)

where the function Λ(x) ≡ x ln(e/|x|) is invertible provided |Λ| ≤ 1; we will assign its inverse

the unique value from the range |x| ≤ 1. Currents outside this range, |I| ≥ I?, behave in the

unphysical manner characteristic of a negative self-inductance: additional current decreases

the self-flux.

Equation (1) is only strictly valid when |I| � I?, however, when tests are possible they

often show it to apply over a wider range (Longcope 2001; Longcope & van Ballegooijen

2002). The present configuration may be subjected to such a test by considering the par-

ticular case a = 0 and θ = 0 which is an axisymmetric field from co-linear point sources.

Due to the axisymmetry the potential-field separator is a semi-circle of X-points enclosing

a flux Ψ(v) = 0.448Φ0 and with a magnetic-shear parameter I? = 2.71Φ0/d (both the values

5We use rationalized electro-magnetic units where ∇×B = J and thus I ≡
∮

B · dl. Expressions may be
converted to MKS or cgs-esu by replacing I with µ0I or 4πI/c respectively.
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are denoted by crosses in fig. 3). An equilibrium with Ψ 6= Ψ(v) has a current sheet located

where the ring of X-points appeared in the potential field.

We expect the largest currents in the limiting cases where P1 and N1 share no flux,

Ψ = 0, or where they share all their flux Ψ = Φ0. The field for each case has the same

structure, but different direction, as a potential field where the signs of certain sources has

been reversed (N1 and P2 are reversed in the first case, P1 and N1 in the second). The

net current for the equilibrium current sheet is calculated as
∫

B · dl in this “sign-reversed”

field, along the surface which becomes a current sheet when the directions of field lines

from reversed sources are restored (see Zhang & Low 2001, for more detailed examples of

this technique). The first limiting case has an infinite current sheet on the plane bisecting

P1 and N1, whose net azimuthal current is I = −2(ε−1 − 1)(Φ0/d)/π. In the second case

the current sheet forms a closed surface enveloping P1 and N1. Remarkably, both limiting

currents fall very close to the analytic approximation given by (1) as shown in fig. 4. This

is just one example of how the approximate current-flux relation appears to be useful over a

wider range of currents than its derivation can justify. We will henceforth adopt relationship

(2) to predict the separator current during quasi-static evolution.
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Fig. 4.— Currents in the flux-constrained equilibrium for the axisymmetric field a = 0, θ = 0.

The current I (solid, normalized to Φ0/d) from approximate expression (2) are plotted versus

∆Ψ (upper axis) and Ψ (lower axis), both normalized top Φ0. The potential field occurs

when Ψ = Ψ(v) = 0.448Φ0, indicated by an arrow. Diamonds indicate the analytic results

for the two limiting cases Ψ = 0 and Ψ = Φ0.
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The small-current approximation can also be used to predict the width of the current

sheet ∆ in terms of a local magnetic shear parameter B′ (see Appendix). Approximating

the vicinity of the separator by a two-dimensional current sheet gives

∆ =

√
4|I|
πB′

=
L

π
32e−2

√
s
|I|B̄′
I?B′

, (3)

where B̄′ is the geometric mean of the perpendicular magnetic shear and s parameterizes

the non-circularity of the vacuum separator; it is typically found to be close to unity (see

Appendix). Unlike the flux-current relationship, this cannot be applied to currents |I| ∼ I?,

since it would predict a width larger than the pseudo-radius of the loop, L/π. In the case of

axisymmetry B̄′ = B′ and s = 1. In the disconnected axisymmetric case, where I = −1.6I?,

the current sheet extends inward to the axis and outward to infinity; a result not well

approximated by (3).

Applying the analytic expression (2) to the evolution from θ0 = π/4 onward gives the

current I(θ) shown in fig. 5. This shows the current carried by the separator ribbon increases

as θ increases. The current is negative since it flows counter to the direction of the separator

field line, which always goes from the positive null to negative null (B2 → A1 for this

separator). This is the direction predicted by Lenz’s law, in order to counter-act the increase

in Ψ(v), and thereby keep the domain flux ψ11 fixed.
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Fig. 5.— The values of separator current I (solid curve, bottom panel) and free magnetic

energy ∆W (solid curve, upper panel) versus the mis-alignment angle θ. For reference the

dashed curve shows 4π∆Ψ/L, also shown in fig. 3b.
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The free energy in the entire magnetic field can be calculated by integrating the electro-

magnetic work required to change the flux inside the current sheet from Ψ(v) → Ψ. Using

expression (1) we find (Longcope 2001)

∆WMCC =
1

4π

Ψ∫
Ψ(v)

I dΨ =
LI2

32π2
ln

(√
eI?

|I|

)
. (4)

This is the magnetic energy in excess of the potential field, and it can be seen in (4) that

∆WMCC vanishes as I → 0. In fig. 5 the free energy is plotted against θ beginning with a

potential field at θ = π/4. The free energy can, in principle, be liberated by eliminating,

through reconnection across the separator, the constraint that ψ11 maintain a fixed value.

The MCC therefore predicts a current sheet carrying current I, flowing in a sheet along

the separator. Using the approximate width from expression (3), and following the separator

field line from the potential field gives the configuration shown in fig. 6. Figure 6b shows

the view within a sectioning plane x = 0. In the potential field, the separatrices, ΣA and ΣB

(dashed) cross at the separator (diamond). This resembles the classic X-point configuration

found in two-dimensional models. As in two-dimensional models (Green 1965; Syrovatskii

1971) stress on the field causes the X-point to develop into a current sheet, shown here as a

vertical line. The sheet has significant extent even for the rather small separator current of

I = −0.017I? found from (2). A perspective view of the full current sheet is shown in fig.

6a.
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Fig. 6.— The current ribbon predicted by MCC for the angle θ = π/2. (a) A perspective

view of the predicted current ribbon. A dotted box shows the sectioning plane x = 0. (b)

The flux domains within the sectioning plane. Dashed curves are the separatrices of the

potential magnetic field, ΣA and ΣB, which intersect at the separator (diamond). The bold

solid line is the approximate current sheet extent for I = −0.064(Φ0/d) = −0.017I?.
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4. The numerical simulation

4.1. Basic equations and simulation domain

The objective of this work is to compare the MCC to a numerical solution of ideal, quasi-

static, line-tied evolution. To do this we solve the equations of time-dependent, compressible,

ideal MHD without gravity for a three-dimensional half-space above a line-tied photospheric

boundary. The equations solved are

∂ρ

∂t
+∇ · (ρv) = 0, (5)

ρ

[
∂v

∂t
+ (v · ∇) v

]
= −∇P +

1

4π
(∇×B)×B, (6)

∂

∂t

(
P

ργ

)
+ v · ∇

(
P

ργ

)
= 0, (7)

∂B

∂t
= ∇× (v ×B) , (8)

where ρ, v, B, P , and γ are the mass density, fluid velocity, magnetic field, plasma pressure,

and adiabatic index, respectively (the monatomic value γ = 5/3 is used).

Equations (5) – (8) are solved in Cartesian coordinates where x and y are horizontal and

z is vertical, increasing upward, within a rectangular domain (−3.53,−3.53, 0) ≤ (x, y, z) ≤
(3.53, 3.53, 5.30) in units of d, the half-separation between the outermost poles. The domain

is filled with a non-uniform 173×173×98 Cartesian-product grid whose spacing is smallest,

(∆x,∆y,∆z) = (0.0177, 0.0177, 0.0177), within a central region |x|, |y|, |z| ≤ 0.707, and

increases to to (0.141, 0.141, 0.177) at the outer edges of the box. The unknowns are time-

advanced using a modified Lax-Wendroff numerical scheme (see Magara 1998, for details)

At the photospheric boundary (z = 0), the horizontal velocity is specified by a time-

dependent function given below and the vertical velocity is always zero. The gas pressure

and gas density at this boundary retain their initial value, while the vertical magnetic field

is obtained by advection according to the prescribed horizontal velocity field. The horizontal

magnetic fields at the photospheric boundary are updated by solving the induction equation,

using a layer of ghost points located at z = −∆z which are given the same velocity and

magnetic field as the photospheric boundary. We impose a stress-free boundary condition

at the other boundaries (top and sides), according to which all the physical quantities are

calculated via zeroth order extrapolation except for velocity which is set to zero. We also

place wave-damping areas near all the boundaries but the bottom one (Magara 1998).
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4.2. Lower Boundary and Initial Conditions

The vertical field prescribed at the lower boundary consists of four isolated sources each

of radius a = 0.212d. Within source i, centered at (xi, yi),

Bz (r⊥) = ±B0

(
1− r2

⊥
a2

)2

, r⊥ < a (9)

where r⊥ =
[
(x− xi)2 + (y − yi)2]1/2 is the distance from its center. Setting Φ0 = πa2B0/3

to unity fixes B0 = 21.26. The four sources are initially arranged as fig. 2a shows. The

radius of gyration of each sources is ā = a/2 = 0.375ε, the same value used in the previous

section (matching the net flux and radius of gyration assures that the potential field from

each source agrees with those in the MCC up to the quadrupole term). Initially the bipoles

are mis-aligned with an angle θ0 = π/4, and the overlying corona is a potential field.
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a) b)

c) d)

Fig. 7.— (a) Initial state of the simulation. The initial condition, consisting of a potential

field above four photospheric magnetic sources. Representative field lines are shown from

each of the four coronal domains: P1–N1 (red), P1–N2 (yellow), P2–N1 (green), and P2–N2

(blue). (b) Color scale shows the distribution of plasma β on each of these initial field lines.

(c) The color code shows the distribution of the Alfvén velocity on the field lines of the

initial field. (d) A snapshot of the imposed velocity field (arrows) and vertical magnetic flux

(contours and color scales) at the photosphere, taken at t = 100.
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The gas pressure is initially uniform p0 = 1.5× 10−4, which is sufficiently small that

regions of strong field, such as the source region interiors, have β = 8.4 × 10−6 (see the

plasma β distribution in 7b). In order to avoid such numerical problems as negative pressure

and extremely large wave speeds, which can occur in explicit schemes, we impose absolute

lower limits on both gas pressure and gas density

pmin = 1.5× 10−5, (10)

and

ρmin = 7.1× 10−4. (11)

These values are close enough to the initial values, that the resulting thermodynamic evo-

lution cannot be considered realistic. Nevertheless, due to the very low values of β the

dynamical evolution of the magnetic field, which is after all the primary aim of our study, is

reliable in this simulation.

Absent gravity and thermal conduction the initial density profile may be chosen without

regard to pressure. For numerical convenience we choose the density to provide Alfvén

velocities and sound speeds within reasonable ranges. We choose the form

ρ = ρ0

(
|B|
B0

)δ
, (12)

where ρ0 = 3.39× 103 and the exponent δ varies in space between 0 along the photospheric

surface, and 1.6 high above. The specific form we choose to accomplish this variation is

δ = 1.6 tanh

[(
4
√
x2 + y2

x2 + y2 + w2
+

1

w

)
z

]
, (13)

where w = 0.353. According to this prescription the gas density is uniformly distributed

at the photosphere (z = 0) and correlated with magnetic field strength high in the corona.

The maximum Alfvén velocity in the initial field is vA = 0.059 just above the photospheric

sources (see the Alfvén velocity distribution in fig. 7c).

4.3. Imposed velocity field

The system evolves in response to the photospheric motions described in section 2: the

two inner sources, P1 and N1, rotate about the origin while sources P2 and N2 remain fixed.

We accomplish this motion by imposing a photospheric velocity field in which vφ is a function

of r⊥ =
√
x2 + y2 and t

vφ (r⊥, t) =
π∆θr⊥

4 tf
sin

(
π
t

tf

)
{tanh [14.1 (r⊥ − r0)]− 1} . (14)
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Here r0 = 0.566d is the approximate extent of the rigid rotation region, ∆θ = π/4 is the

net angle rotated (see fig. 1, θ : π/4 → π/2), and tf = 200 is the duration of rotation. The

imposed velocity starts increasing from zero at t = 0 and reaches the maximum, about 4%

of the maximum Alfvén velocity at t = 100, then it starts decreasing and finally returns to

zero at t = 200. The snapshot of the imposed velocity field taken at t = 100 is shown in

figure 8d.

The goal of the simulation is to approximate quasi-static magnetic evolution under the

ideal induction equation (8). In order to keep the system close to equilibrium we perform

two intermediate operations following each velocity advance which serve to smooth and

damp the velocity field. The first operation damps the motion with an artificial friction by

decrementing all velocities according to the recipe

v → (1− α)v , (15)

where α = 0.1∆t is a small number. Next, the velocity at each grid point (i, j, k) is smoothed

by averaging according to the recipe

v (i, j, k) → σv (i, j, k) + 1−σ
6

[v (i + 1, j, k) + v (i− 1, j, k) + v (i, j + 1, k)

+v (i, j − 1, k) + v (i, j, k + 1) + v (i, j, k − 1)]
(16)

where σ = 0.9.

4.4. Numerical results

The resulting evolution of the four magnetic domains is shown in fig. 8. The central

domain P1–N1 (red field lines) appears to rotate rigidly in accordance with expectation.

The two side domains P1–N2 and P2–N1 (green and yellow field lines) are slowly deformed

by the relative motions of their footpoints — their inner footpoints move while their outer

footpoints remain fixed. The overlying domain P2–N2 (blue field lines), whose footpoints

remain fixed, shows no significant change.
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Fig. 8.— Temporal development of flux domains: t = 0 (upper panel), t = 100 (middle

panel), and t = 200 (lower panel).
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The relative motions of these domain creates a distribution of current density concen-

trated along the interfaces, as shown in fig. 9. In order to de-emphasize transient currents,

we plot field-aligned current density, Js ≡ J · B/ |B|, where it crosses the sectioning plane

x = 0. In each panel, field lines that belong to the central and overlying domains are shown

in blue. Since the central domain, P1–N1, rotates relative to the overlying domain, P2–N2,

a current is generated at the boundary separating those domains. The development of this

current, called inter-domain current, can be observed as a growing spot near the z axis on

the sectioning plane which begins orange and later turns blue. This region of highest current

density forms a vertical strip in the later phase (t = 200). Additional current-concentration

occurs inside the two side domains and inside the central domain, which appear as green

regions by t = 200. Field lines in the side domains, P1–N2 and P2–N1, are subjected to

relative motions of their footpoints leading to current inside the domain, called intra-domain

current. These domains also change shape with time, which eventually compresses central

domain causing at least temporally, intra-domain current in P1–N1 even though this domain

rotates rigidly, and therefore has no relative internal footpoints motions imposed.
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Fig. 9.— Time history of field-aligned current on the sectioning plane at x = 0. A color

map on the bottom plane shows the distribution of vertical magnetic field. Only the field

lines belonging to the central domain and overlying domain are shown by blue lines.
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5. Comparison

To interpret the simulation results in terms of the MCC model we plot the local field

line twist parameter α ≡ Js/|B| within the sectioning plane (fig. 10). This shows clearly

the negative concentration of field-aligned current (dark) along the interfaces of the flux

domains. The intra-domain current appears in regions of strong field and is not as evident in

the plot of α(y, z). For comparison we overlay the features of fig. 6b showing the separatrices

of the potential field (dotted) and the extent of current sheet predicted by expression (3).

The current sheet is thus an extrapolation to large currents of an approximation valid for

infinitesimal currents which, as discussed in sec. 3, is never as accurate as the net current;

it is shown primarily as a visual guide. The dashed lines are meant to indicate the modified

shape of the separatrices expected in the FCE; they are constructed by connecting the tips

of the predicted current sheet to the bottoms of the potential-field separatrices. The central

concentration of α (dark) conforms to this predicted shape, showing a vertical current sheet

located approximately where the potential field’s separator had been.
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Fig. 10.— A grey-scale plot of the twist parameter α(y, z) = Js/|B| within the sectioning

plane x = 0 from the final time of the simulation, t = 200. Dotted lines show the separatrix

of the potential field. Left panel: The solid vertical line shows the predicted extent of the

current sheet (solid) and dashed lines indicate expected shape of separatrix in the flux-

constrained equilibrium. Right panel: The location of the actual separatrix at t = 200.
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The right panel of fig. 10 shows the actual separatrices found by tracing field lines from

a grid of points in the sectioning plane to one of the distinct photospheric sources. The

two curves cross at that point the separator pierces the sectioning plane. It is noteworthy

that the separator in the actual field is located very near where it would be in a potential

field. Below the separator the separatrices have converged relative to those in the potential

field, as a result of the current sheet. Above the separator the separatrices are much closer

to those of the potential field. Finally, there are two dark, diagonal bands emanating from

y ' ±0.7 at the photosphere. The diagonal bands are seen below to be related to the edge

of the rigid rotation region at a radius r = r0 = 0.566.

A horizontal slice made slightly above the photosphere (z = 0.07), shown in fig. 11,

reveals that the ribbons of large negative α remain near the separator. The separatrices

in this slice are also very similar to those of the potential magnetic field, departing most

notably where they pinch toward the current ribbon at the separator. Two negative layers

outside of parallel positive layers lie just outside the region of rigid photospheric rotation,

r = r0 = 0.566 (black dotted line). The negative layers intersect the sectioning plane (x = 0)

at y ' ±0.8 and are clearly the top-view of the “diagonal bands” from fig. 10. (Indeed, more

careful inspection of fig. 10 reveals traces of the positive layers inside the negative bands.)

This suggests that these currents result from dynamical transients evolving very slowly (more

slowly even than the slow footpoint motion) due to the small Alfvén speeds in the field-free

portions of the photosphere. Since our objective is to study quasi-static coronal evolution

we will henceforth ignore these transient features confined to the bottom of the corona.
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Fig. 11.— A horizontal plane just above the photosphere (z = 0.07) at t = 200. The grey-

scale shows the local twist α(x, y). Solid and dashed black lines are the spine and fan-trace

(respectively) of the separatrices at z = 0, exactly as in fig. 2. White solid lines are the

actual separatrices of the field. The black dotted line is the circle at r = r0 = 0.566 inside

which the photosphere was rigidly rotated.
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To make a quantitative comparison of the simulation to the MCC we define Is as the

integrated field-aligned current Js in the inter-domain system. We first define a rectangular

region, within the sectioning plane, encompassing the current sheet. We then sum Js over

all pixels where Js < 0, to find Is. Figure 12 shows the values of Is (crosses) plotted against

the rotation angle θ. The value predicted by the MCC (solid line) is less than the observed

current. We describe in the following section why this may happen.
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Fig. 12.— Inter-domain field aligned current Is plotted against the angle of rotation θ. The

solid line show the separator current I(θ) predicted by MCC.
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5.1. The Discrepancies

In order to assess the significance of the evident differences between the simulation and

the MCC, we must understand the degree to which the simulation adheres to the MCC

assumptions. The photospheric flux distribution was designed to exactly conform to the

discrete-source assumption, so this will not be a source of discrepancy. Conforming to FCE

assumption, on the other hand, requires first that the system remain close to equilibrium

(quasi-static evolution), and second that footpoints move appropriately within each photo-

spheric source regions. We have attempted to adhere to the first part of this by moving

the photosphere as slowly as possible, and further by damping excess velocity. The kinetic

energy of the system remains below 2 × 10−3 Φ2
0/d, which is less than one percent of the

magnetic energy. To see where the field departs most from force-free equilibrium we plot the

quantity |J×B|/|B|2. There are significant departures from force balance at the separator

current sheet, where α is greatest. The ratio of these two values, |J × B|/|J · B| ' 0.25

implies that current makes a relatively small angle ' 14◦ with the the magnetic field in the

vicinity of the current sheet. It is likely that the strong current there is out of equilibrium,

and is pinching inward. The most significant distribution of Lorentz force appears to be

near the photospheric sources, and the boundary of the rotating region, corroborating our

previous assertion that this lowest layer harbors dynamical transients.
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Fig. 13.— A plot of the normalized Lorentz force, |J×B|/|B|2. This ratio of this quantity

to α gives the tangent of the angle between current and magnetic field, on a scale in which

grey is zero. The lines are the same as in fig. 10.
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The simulation is bound to violate the FCE assumption of the MCC since it uses

line-tied photospheric boundary conditions. If the simulation were performed perfectly

quasi-statically, and with absolutely no resistivity, it would approach force-free magnetic

fields B(LT), satisfying the line tying constraints, rather than the flux-constrained equilibria

B(FCE) assumed by the MCC. The flux constrained equilibrium can, in principle, be ap-

proached beginning from the line-tied equilibrium through a series of additional footpoint

motions. These motions should be internal to each source and should, in each case, decrease

the overall magnetic energy. At any place where the current ∇×B(LT) enters a source, it is

possible to untwist those footpoints, eliminate the current and thereby decrease the field’s

overall energy. The Euler-Lagrange equations from the minimization (Longcope 2001) show

that when minimum energy is achieved, B = B(FCE), no current enters any source — all

domains are current-free.6 This sequence of footpoint motions which permits the transfor-

mation B(LT) → B(FCE) demonstrates the extent to which the footpoint mappings of the two

equilibria disagree.

5.2. Magnetic helicity evolution

The difference in footpoint mappings between B(LT) and B(FCE) is the principal source of

discrepancy between the simulation and the MCC. A simple way to quantify this discrepancy

is to compare the relative helicities of the two fields. The relative helicity of a magnetic field

occupying the half-space z > 0 is (Berger & Field 1984; Finn & Antonsen 1985)

HR =

∫
z>0

(B−Bp) · (A + Ap) dx , (17)

where Bp is a potential magnetic field matching Bz(x, y, 0), and A and Ap are vector poten-

tials for the actual and potential magnetic fields respectively. This expression for magnetic

helicity has been rendered gauge-invariant by defining it relative to the helicity of the po-

tential magnetic field Bp. This naturally means that HR = 0 when ∇ × B = 0 (i.e. when

B = Bp).

Magnetic helicity provides a measure of how much, on average, the field-lines in an

equilibrium twist about one another. Helicity is locally conserved under ideal evolution, in

which case its change depends on a flux due to footpoint velocities v(x, y), and not on the

6It also implies that there are no currents on separatrices, since all separatrix field lines, except separators,
have one footpoint in a source.
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coronal field, (Berger & Field 1984)

dHR

dt
= −2

∫
z=0

(Ap · v)Bz dx dy , (18)

where a gauge has been chosen to make ẑ · A = 0 on the photosphere. In our model,

photospheric motions consist of horizontal translations vi combined with rigid rotations at

angular velocity ωi of the axisymmetric sources. In this case the photospheric helicity flux

takes the simple form

dH
(LT)
R

dt
= −

∑
i

ωiΦ
2
i

2π
−
∑
i

∑
j 6=i

ΦiΦj

2π

(xi − xj)× (vi − vj) · ẑ
|xi − xj |2

. (19)

Figure 14 shows the integral of expression (19) beginning with HR(0) = 0 (the initial field

is potential). This compares favorably to the relative helicity of the simulated magnetic

field calculated within the simulation domain according to a prescription given in Magara &

Longcope (2003).
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Fig. 14.— The relative helicity injected by photospheric motions. Solid lines show the in-

jected helicity H
(LT)
R found by time-integrating expression (19). Dashed curves show H

(FCE)
R .

The left panel shows both vs. angle θ and squares denote θ = π/2. The right shows the

time-history where θ(t) runs form = θ0 = π/4 to π/2.
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Rather than deduce the footpoint velocities of the FCE we can directly calculate the

magnetic helicity of B(FCE). Introducing an auxiliary field Z such that ∇× Z = A for A in

the Coulomb gauge, we integrate (17) by parts7 to get

H
(FCE)
R =

∫
z>0

J · (Z + Zp) dx '
∑
σ

2Iσ

∫
σ

Zp · dl , (20)

where the final expression, with an integral along each vacuum separator σ, is valid to

lowest order in separator currents Iσ. Figure 14 shows the relative helicity of the MCC field

(dashed) to be negative and smaller than that injected by the rigid source motions. The

negative helicity could have been predicted from the fact that the current on the separator

flows in the sense opposite to Bp. The difference ∆HR ≡ H
(LT)
R − H

(FCE)
R between these

helicities provides one measure of the discrepancy between the MCC and line-tied evolution.

5.3. Modeling the discrepancy

A simple thought experiment illustrates the potential significance of the discrepancy

quantified by ∆HR. Reversing those internal motions which accomplished the energy relax-

ation B(LT) → B(FCE) will inject helicity ∆HR, and will bring the system from B(FCE) to

equilibrium B(LT). Since the source-region locations are fixed during this helicity injection

we refer to ∆HR as the total self-helicity of the regions. Following this logic, H
(FCE)
R , given

in expression (20), is the mutual helicity quantifying the interlinking of the flux domains

about one another. The flux of mutual helicity can be approximated by the double sum in

expression (19), which involves relative motions of source pairs. This term is negative in

our example since it is dominated by the clockwise rotation of bipole P1–N1, therefore it is

natural that H
(FCE)
R < 0, as we find.

While the internal footpoint motions taking B(FCE) → B(LT) will be quite complex, the

helicity flux quantifies the overall extent to which footpoints rotate about one another within

each source. Due to this overall rotation, the internal footpoint motions will inject intra-

domain currents which are necessarily absent from B(FCE). If the motions are smooth within

the domain they will inject non-singular current densities, and if they are also localized

within the source regions we would expect no net current.

Proceeding along this line, it is possible to estimate the magnitude of current density

and excess magnetic energy expected in the line-tied equilibrium B(LT). The photospheric

7Using gauge freedoms in their definitions we make ẑ · A = 0 and ẑ × Z = 0 on the boundary z = 0,
eliminating any surface contributions
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motions have been designed to leave domains, P1–N1 and P2–N2 untwisted, since P1–N1 is

rotated as a whole (all its footpoints are within the disk r < r0) and P2–N2 is never moved.

We therefore expect to find most, if not all, intra-domain current within P1–N2 and P2–N1.

If we assume that the hypothetical internal motions inject twist into only these domains,

leaving footpoints of P1–N1 and P2–N2 unaffected, then each domain would receive a self-

helicity ∆HR/2. According to Woltjer’s theorem (Woltjer 1958), the magnetic energy in

each of these domains is bounded from below by that of a constant-α field: ∇×B = α21B.8

Motivated by dimensional arguments and axisymmetric cases (see Longcope & Welsch 2000)

we approximate the self-helicity H21 ' α21L̄21ψ
2
21, where L̄21 is the length of a typical field

line in the domain. Using this approximation yields a twist value

α21 '
∆HR

2L21ψ2
21

. (21)

The free energy in each domain can be shown to be ∆W21 = α21H21/8π. This means that

the energy in excess of FCE is at least

WLT −WFCE ≥
1

8π
α21∆HR . (22)

Figure 15 shows the evolution of α21 and WLT over the course of the run. By the end

of the simulation the local twist has reached α21 = 0.12/d, far smaller than the α ' −8/d

near the simulation’s separator. This provides a net current I21 = α21ψ21 ' 0.06Φ0/d in

each domain. This positive intra-domain current would be distributed throughout P1–N2

and P2–N1. Our thought experiment generates this intra-domain current through internal

motions in each source region. Localized, internal motions are not capable of injecting net

currents into a domain, and so there must be opposing, negative current on the separatrices of

this region, presumably by discontinuities in the footpoint motions along those separatrices.

If the separatrix current were equal and opposite to the total intra-domain current 2I21 =

0.12 Φ0/d, the total inter-domain current would be ' −0.18Φ0/d, close to the observed value

in fig. 12.

Figure 15 shows that the self-helicity in each domain boosts the free-energy to ' 6 ×
10−4Φ2

0/d, an order of magnitude greater than the topological energy ∆W ' 6× 10−5 Φ2
0/d

due to the flux constraints alone.

8We use the symmetry of the system to reason that α will be the same in domains P1–N2 and P2–N1.
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Fig. 15.— An estimate of the energetic consequences of line tying. (bottom) The twist

parameter α21 corresponding to self-helicity ∆HR vs. time. (top) Estimates of the free

energies of B(LT) (solid) and B(FCE) (dashed). The dash-dotted line is the lower bound on

the excess energy from self-helicity, WLT −WMCC, from expression (22). The solid line is a

sum of this and ∆WMCC, the dashed line.
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The free magnetic energy is such a small fraction of the total energy (less than one

percent) that it is not possible to reliably compute the free-energy from the simulation. The

total magnetic energy within the computational domain is ∼ 0.25 Φ2
0/d, very close to the

energy of the corresponding potential field. Subtracting the two gives an energy difference

which peaks at ∼ 3.5 × 10−3 Φ2
0/d some time around t ' 100, at the same time the photo-

spheric velocity peaks. The system is driven slowly enough that the kinetic energy remains

below 2× 10−3 Φ2
0/d, less than 1% of the magnetic energy. Nevertheless, this kinetic energy

is almost as large as the difference in magnetic energy. Thus the system must undergo far

more viscous relaxation to reach the equilibrium whose energy defines the free energy ∆WLT .

Were we able to perform this relaxation, we expect that the magnetic energy difference would

decrease from its t = 200 value of ' 2.3× 10−3 Φ2
0/d. This provides an upper bound to the

free energy, which is comfortably far above the theoretical lower bound of ' 6× 10−4Φ2
0/d,

estimated from the relative helicity.

6. Discussion

We have used two different models to study the quasi-static evolution of coronal fields

driven by photospheric field evolution in a simple scenario. In the first model, the Minimum

Current Corona, an increasing current flowed along the field’s separator as the photospheric

sources moved. As the current increased so did the free magnetic energy stored in the field.

In the second model, the evolution was found by numerically solving the non-linear, time-

dependent equations of ideal MHD subject to line tying. This also showed an increasing

current concentration at the separator. In both models the current had the same sense, the

same location, and similar time histories. The free magnetic energy stored by line tying was

significantly larger than that in the MCC, but not as easily calculated.

The principal difference between the two models was in the presence or absence of con-

tinuous currents within the flux domains; so-called intra-domain current. This discrepancy

is expected since the two models differ primarily in the footpoint motions they assume.

The discrepancy can be quantified through the relative helicity injected by into the corona

through the footpoint motions. A piecewise-constant-α field with this helicity provides an

estimate of the difference in current and energy between the two models. The estimated

separatrix currents more than doubles the magnitude of the inter-domain currents, in a-

greement with our comparison. It also predicts that the line-tied equilibrium field should

have a free-energy approximately an order of magnitude larger than the MCC. The magnetic

energy in the simulation is larger still, however, much of the excess magnetic energy can be

attributed to the field’s departure from equilibrium.
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This detailed analysis of a simple experiment is intended to shed light on the quasi-

static evolution of real coronal fields. While realistic fields will have geometries far more

complex than our quadrupole, they will consist of the same geometric components. The

MCC can be applied to coronal fields of arbitrary geometric complexity provided they can

be approximated by some number of discrete photospheric sources (Longcope & Klapper

2002). Any configuration will, by assumption, evolve through FCEs, which contain current

on each and every separator, and nowhere else. Our simple experiment leads us to expect

that line-tied, quasi-static evolution of such a field will contain inter-domain currents on the

separatrices as well as the separator, and will also contain continuous intra-domain currents

in each domain. These additional currents will necessary store additional free energy, since

the FCE is a lower-bound on the free-energy of a line-tied field (Longcope 2001). It remains

to generalize to more complex fields the technique of estimating free energy using magnetic

helicity.

Our comparison was unable to address directly issues of rapid energy release. We can,

however, foresee some potential differences between the two models, in this respect. It is

easy to quantify the consequences of magnetic reconnection with the MCC by calculating the

energy decrease resulting from relaxing (eliminating) one or more constraints. The energy

difference depends only on the amount of flux transfered by reconnection, and not on any

details of the reconnection such as the local dissipation power density or the electric field.

This same mechanism-independence is absent from non-linear, time-dependent MHD simu-

lations, as the wide variety of numerical reconnection studies in the literature demonstrate.

Using a current-density sensitive resistivity in nonlinear simulations (Ugai & Tsuda 1977;

Sato & Hayashi 1979) is one technique, albeit somewhat ad hoc, by which non-linear MHD

evolution can transition rapidly between highly-conductive and resistive phases. Simulations

of specific solar geometries have used this approach, mostly in two dimensions (Yokoyama

& Shibata 1996). In the future, three-dimensional investigations using this technique may

provide a numerical comparison to the MCC.

Our analysis, using relative helicity, of the inter-model discrepancy sheds some light on

the possibility of rapid energy release following line-tied evolution. Following the transfer

of ∆ψ into domains P1–N1 and P2–N2, there will be a lower energy equilibrium to which

the field may relax. Quantifying this energy difference would provide an estimate of rapid

energy release in the same spirit as the MCC estimate. In both models, the flux transfer

will diminish the separator currents, and thereby decrease the equilibrium energy. In the

line-tied model it will also re-distribute self-helicities between the domains, permitting a

further decrease in energy. The self-helicity will change only on that fraction of field lines

which have undergone topological change: ' ∆ψ/Ψ(v). We therefore cannot expect to

liberate all of the excess energy WLT from expression (22). Indeed, to liberate the full energy



– 42 –

associated with the small decrease in the self-helicity, ∆(∆HR), requires Taylor relaxation

of entire domain, extending far from the site of reconnection: the separator. This need for

additional, internal relaxation after magnetic reconnection has been previously used, with

two-dimensional models, to argue that line-tying will inhibit the rapid release of most of a

field’s free energy (Antiochos et al. 2002). A more detailed calculation of this process, in

three dimensions, will be presented in future work.

This material is based upon work supported by the National Science Foundation under

grant No. ATM-97227. The numerical computations were carried out using the facilities at

the National Center for Atmospheric Research in the US and the National Institute of Fusion

Science in Japan.

A. An approximate Current-Flux relationship

This appendix presents an approximate current-flux relationship, Ψ(cr)(I), for equilibri-

um separator currents. The relationship is derived for small currents which affect the field

only in the immediate neighborhood of the magnetic separator of the potential magnetic

field. The derivation follows that given by Longcope & Silva (1998), but uses a slightly more

concise notation.

A.1. The single line-current approximation

For simplicity we enforce the photospheric boundary conditions by reflecting the coronal

field in a mirror corona in the region z < 0:

Bx(x, y,−z) = Bx(x, y, z) , By(x, y,−z) = By(x, y, z) , Bz(x, y,−z) = −Bz(x, y, z) .

Adding the reflection of the separator field line yields closed curve of length 2L, which we

will denotes S. The first approximation to the separator ribbon is line current I following

a closed curve near the separator curve. The actual current path must be chosen so that

flux anchored to the sources is topologically unchanged, while an additional self-contained

set of field lines wrap around the line current (Longcope & Cowley 1996). For small enough

current, however, the current path can be approximated by the potential-field separator and

mirror image, S.

We introduce a length coordinate ` running along the curve S in the sense that makes

B ‖ l̂ in the corona. We also introduce the coordinates (ξ, η) within the plane perpendicular
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to S at a given point. Within this plane the perpendicular components of the potential

magnetic field take the general form

Bp
ξ (ρ, ϕ, `) = Mξξ ρ cosϕ + Mξη ρ sinϕ (A1a)

Bp
η(ρ, ϕ, `) = Mξη ρ cosϕ + Mηη ρ sinϕ , (A1b)

where (ρ, ϕ) are polar coordinates defined so that φ̂ is right handed with respect to l̂. The

coefficients are found from the general Jacobi matrix Mij = ∂Bi/∂xj , and will depend on `,

the coordinate along the separator.

A line current flowing along in the l̂ direction through the origin will add a perpendicular

magnetic field BI
ϕ = I/2πρ. Adding this to the potential contribution yields a net azimuthal

magnetic field

Bϕ = B′ρ cos[2(ϕ− ϕ0)] +
I

2πρ
, (A2)

where we have introduced the angle ϕ0

tan 2ϕ0 = −Mξξ −Mηη

2Mξη

and defined a local magnetic shear

B′(`) =
√

1
4
(Mξξ −Mηη)2 +M2

ξη =
√

1
4
T 2 −D , (A3)

where T = Mξξ +Mηη = −∂B`/∂` and D = MξξMηη −M2
ξη are the trace and determinant of

the two-by-two sub-matrix.9 This can be expressed without reference to ξ or η using M, the

full three-by-three Jacobi matrix, and R, a π/2 rotation about the local tangent vector l̂,

B′(`) =
√

3
4
(∂B/∂`)2 − 1

2
Tr[ RT ·M · R ·M ] . (A4)

The local shear parameter B′(`) characterizes the potential magnetic field in the vicinity

of the separator. In an axisymmetric field, ∂/∂` = 0, the local potential field (A1) may be

concisely written in terms of the complex coordinate ζ ≡ ξ + iη, as

Bp
η + iBp

ξ = e−2iϕ0B′ ζ . (A5)

This is a classic X-point whose separatrices are inclined from the coordinate axes by an angle

ϕ0, and B′ is the field gradient in its vicinity. Definition (A4) is the natural generalization

of this quantity to the vicinity of a separator field line in three dimensions.

9This expression differs from the definition given in Longcope & Silva (1998), which fails to account for
∂B`/∂` 6= 0.
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The new field will consist of domains equivalent to those of the potential field plus a

domain of field lines wrapping about the current, as in fig. 16. The new domain will be

enclosed by two separatrices joined along two separators running roughly parallel to the

potential-field separator (see Longcope and Cowley 1996). The distance from S to the new

separator may be estimated by considering the field components in the perpendicular plane,

which resemble a classic magnetic island (see fig. 16). The azimuthal field does not reverse

direction inside of a radius ρx =
√
|I|/2πB′, making this a natural estimate of the extent of

the wrapping region. Indeed there are two X-type nulls in the transverse field, X1 and X2,

at angles ϕx satisfying cos[2(ϕx − ϕ0)] = −sgn(I). Following X-point Xi as ` varies from

0 to 2L, yield a closed curve Xi shown fig. 16.10 For small enough currents these curves

will approximate the locations of the two separators, whose true definition cannot be cast

in local terms. The innermost of the two separator curves, Xin, will enclose the same flux

domains as the potential-field separator, but with a different amount of flux in general.

10Due to the reflectional symmetry about z = 0 the curves Xi will not link the central curve, S or one
another.
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Fig. 16.— The closed curve S composed of the separator from the potential field and its

mirror image. The tangent vector l̂ defines local right-handed coordinate system (ξ, η, `).

The inset shows the island-like structure of the field components in the (ξ, η) plane, with

two null points, X1 and X2. The shaded portion is approximation of the set of field lines

which wrap around the line current. The traces of the perpendicular null points form two

closed curves, X1 and X2.
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For this one-line-current approximation of the separator ribbon, the flux Ψ is one-half

of that enclosed by curve Xin both in the corona and mirror corona. Including both the flux

from the potential field, Bp, and from the current this is

2Ψ =

∮
Xin

Ap · dl +
I

4π

∮
S

∮
Xin

dl · dl′
|x− x′| . (A6)

The double integral in the second term is the well-known Neumann formula for mutual

inductance between curve S (where the current is) and curve Xin (inside which we find the

flux).

To evaluate the first integral we note that an integral over the nearby curve S would be

2Ψ(v). The flux within the curve Xin, chosen to be inside S, will differ by the amount of flux

passing between the two curves∮
Xin

Ap · dl ' 2Ψ(v) −
2L∫

0

ρx∫
0

Bp
ϕ(ρ, ϕx, `) dρ d` = 2Ψ(v) + sgn(I)

2L∫
0

1
2
B′ρ2

x d` . (A7)

The double integral in expression (A6) does not diverge since the curves S and Xin

never intersect. In the limit of very small current, and therefore small separations ρx, the

two curves are almost parallel and the integral may be replaced by one involving only the

current path S parameterized x(`)∮
S

∮
Xin

dl · dl′
|x− x′| '

2L∫
0

2L∫
0

l̂(`) · l̂(`′) d` d`′√
|x(`)− x(`′)|2 + ρ2

x(`)
. (A8)

The expression on the right is the self-inductance of a thin wire of radius ρx(`), which depends

on the global geometry of the curve S as well as on the radius. In the limit ρx → 0, where

the self-inductance diverges, the two dependences may be formally separated by adding and

subtracting the self-inductance of a reference wire with the same divergence. Choosing a

circular wire of length 2L (major radius L/π) adds and subtracts the contribution

L◦(ρx) ≡
2L∫

0


2π∫

0

cos(θ) dθ√
4 sin2(θ/2) + [πρx(`)/L]2

 d` , (A9)

where θ = π(`′ − `)/L. The inner integral may be evaluated in terms of elliptic integrals

and, in the limit ρx/L� 1, may be approximated as a logarithm to give

L◦(ρx) =

2L∫
0

ln

[
64e−4L2

π2ρ2
x(`)

]
d` + O(ρ2

x ln ρx) . (A10)
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Subtracting the same term from (A8) yields a contribution which converges to a constant

at ρx → 0. We define this constant as 2L ln s,

2L∫
0

2L∫
0

{
l̂(`) · l̂(`′)
|x(`)− x(`′)| −

π cos[π(`′ − `)/L]

2L| sin[π(`′ − `)/2L]|

}
d` d`′ ≡ 2L ln s , (A11)

where parameter s characterizes the contribution of the overall geometry of S to its self-

inductance. It is defined to be unity in the case of the reference configuration, a circular

loop.

A.2. Matching the two-dimensional current sheet

The analysis to this point has used a single line current, the simplest approximation of a

current sheet. Longcope and Cowley describe a method for improving the approximation by

increasing the number of line currents until they form the distributed surface current density

of a separator current ribbon. Each iteration involves a version of expression of (A6) where

the innermost separator Xin, has moved and thus there is a new expression for ρx. This

same technique can be used with a purely axisymmetric field, ∂/∂` = 0, in which S is a ring

of X-points. This case can also be approximated by an analytic expression for the current

sheet, and thus for the inner separator distance ρx. We will use this case to define ρx in

general, thereby assuring that our current-flux relationship reverts to the analytic expression

in cases of axisymmetry.

In the axisymmetric limit, ∂/∂` = 0, the local fields may be concisely written in terms

of the complex coordinate ζ ≡ ξ + iη. The potential field is given by (A5) and a single line

current adds −I/2πζ to this. The so-called Green-Syrovatskii current sheet solution (Green

1965; Syrovatskii 1971) is given by

Bη + iBξ = e−2iϕ0B′
√
ζ2 − e2iφxρ2

x . (A12)

This is seen to match the potential field (A5) when |ζ | � ρx. The Cauchy-Riemann con-

ditions of complex analysis (see e.g. Carrier et al. 1966) assure that the field is current-free

except along a branch-cut connecting the branch points at ζ = ±eiφxρx; the branch cut is

the current sheet. Integrating around the current sheet yields a net current

|I| = πB′ρ2
x . (A13)

The inner Y-point of the current sheet is therefore located a distance

ρx =

√
|I|
πB′

(A14)
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from the potential-field separator, a factor
√

2 farther than the X-point in the single-line-

current approximation. The total width of this current sheet is twice this distance,

∆ =

√
4|I|
πB′

, (A15)

which we adopt as the width of the separator current ribbon.

In order that our general current-flux relationship goes over to a Green-Syrovatskii

current ribbon in two dimensions, we adopt expression (A14) in the foregoing analysis. One

final modification is to replace the self-flux of a circular line-current with that of a circular

ribbon with a surface current distribution following (A12). This modification amounts to

replacing the logarithmic factor in expression (A10) with the self-inductance of a current

sheet, found as a distribution of line currents at distances ranging from 0 to ∆. Integrating

these with the surface current distribution of a Green-Syrovatskii current sheet specifies the

transformation

ln

[
64e−4L2

π2ρ2
x

]
→

1∫
0

ln

[
64e−4L2

π2(u∆)2

]
8

π

√
u(1− u) du

= ln

[
64e−4L2

π2∆2

]
− 16

π

1∫
0

ln u
√
u(1− u) du = ln

[
256e−5L2

π2ρ2
x

]
,

after using ∆ = 2ρx.

Combining expression (A6), (A7) and (A10) and making the substitution above into

the self-inductance L◦ gives a self-flux

Ψ(cr) ≡ Ψ−Ψ(v) =
LI

2π
+

LI

4π
ln s +

I

4π

∫ L

0

ln

[
256e−5L2B′(`)

π|I|

]
d` . (A16)

Forming the geometric mean of the magnetic shear along the potential-field separator,

B̄′ ≡ exp

{
1

L

∫ L

0

ln[B′(`)] d`

}
, (A17)

allows the self-flux to be concisely expressed as

Ψ(cr)(I) =
IL

4π
ln

(
256e−3L2B̄′s

π|I|

)
=

IL

4π
ln

(
eI?

|I|

)
, (A18)

in terms of the characteristic current11

I? ≡ 256e−4L2B̄′s

π
. (A19)

11Recall that (A19) is in rationalized cgs-emu. The current in cgs-esu is found by multiply the right-hand
side by c/4π, or in MKS by multiplying the right-hand side by µ−1

0 .
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This definition of I? is adopted so that ∂Ψ(cr)/∂I = 0 when |I| = I?.

In summary, we have derived the flux-current relationship for a separator current ribbon

in the limit of small currents. It depends principally on the length L of the separator, and

logarithmically on a characteristic current I? given by expression (A19). Beyond the current

|I| = I? the flux-current relationship exhibits an unphysical reversal: larger current produces

less flux. The current I? depends on the length of the potential field separator as well as two

other global properties. The first global parameter, s, characterizes the overall shape the

potential field separator according to expression (A11). The second global parameter, B̄′, is

the geometric mean, as given by (A17), of the local magnetic shear, B′(`), in the magnetic

shear in the potential field along the separator according to expression (A4).
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