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ABSTRACT

Magnetic helicity has become a valuable tool for understanding the energet-

ics and dynamics of coronal magnetic fields. Recently long time-sequences of

magnetograms have been used to measure the flux of helicity into active region

coronae. We demonstrate how this helicity flux can be usefully decomposed into

contributions of differing origin, called spin helicity and braiding helicity. These

contributions would typically come at the expense of twist and writhe helicity,

respectively, of a sub-photospheric flux tube anchored to the regions. In order to

effect this decomposition each magnetogram is partitioned into a set of unipolar

regions. We present a method to define such regions so that they persist through

the sequences and track the photospheric flow. The spin helicity of a given re-

gion quantifies the mean rotation rate of motions internal to that region, while

braiding helicity is injected by the motions of whole regions about one another.

Applying the method to six active regions shows cases where either spin or braid-

ing dominates, and where they have the same signs and opposite signs. Thus it

would seem that no general statement can be made regarding the dominance of

twist or writhe in supplying helicity to the corona. In one particular case spin

and braiding helicity follow different time histories but inject equal and opposite

net helicities. This suggests that the spinning and braiding are driven by a kink

instability in the submerged flux tube.

Subject headings: MHD — Sun: magnetic fields
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1. Introduction

Magnetic helicity has emerged, over the past several years, as an important quantitative

tool for characterizing the solar coronal field. Defined originally by Berger & Field (1984),

relative helicity quantifies the overall twist of a magnetic field anchored to a boundary such

as the photosphere. Since relative helicity is defined relative to the field’s lowest energy

state, a potential field, it may be used to bound the system’s free energy: the energy above

the minimum (Berger 1988). Unfortunately relative helicity is not directly measurable since

it depends on the magnetic field throughout the entire coronal volume. It is, however,

conserved under conditions expected in the corona and therefore changes only from fluxes

through boundaries (Berger 1984). This flux depends only on properties at the boundaries,

such as the photosphere, and is therefore far more accessible to direct measurement.

The photospheric flux of relative helicity depends on the distribution of magnetic field

and velocity there. Since magnetic field maps, magnetograms, are standard measurements

by now, the principlal hurdle in any relative helicity flux measurement is mapping the pho-

tospheric velocity. The most widely used technique for constructing such a map is the

Local Correlation Tracking (LCT) introduced by November & Simon (1988). Chae (2001)

combined LCT velocity maps with 40 hours of sequential magnetograms from the Michelson

Doppler Imager (MDI, Scherrer et al. 1995), to produce a time history of the helicity flux into

one particular active region (AR). Subsequent authors have refined the technique (Kusano

et al. 2002; Démoulin & Berger 2003). One form or another has been applied to extended

observation of several other active regions (Chae et al. 2001; Green et al. 2002; Démoulin

et al. 2002; Moon et al. 2002; Nindos et al. 2003), leading to a developing picture of the

magnetic helicity budget of a “typical” active region.

The aforementioned measurements confirm that magnetic helicity crosses the photo-

sphere in most ARs observed. It is hypothesized that the additional free energy which this

helicity represents is a driver of energetic activity such as flaring and coronal mass ejections.

It is less clear what serves as the source driving helicity across the photosphere in the first

place.

Since helicity is conserved, any change in the coronal helicity must be compensated by

an offsetting change in the convection zone. The confinement of sub-photospheric magnetic

field to isolated flux permits its helicity to be decomposed into twist and writhe contributions

(Berger & Field 1984; Moffatt & Ricca 1992). The writhe helicity of a flux tube depends only

on the configuration of its axis, while the twist contribution depends on the internal structure

of the field about the axis. This kind of decomposition cannot be performed naturally on the

coronal field since it fills the volume. It is, however, meaningful to ask whether photospheric

helicity flux comes at the expense of twist or writhe helicity of the underlying flux tubes. It
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is this question we wish to address in the present work.

The primary motivation for answering this question is that we intuitively associate

a different mechanism with changes in writhe than with changes in twist. A flux tube’s

writhe is changed by a motion of its axis. Such motions couple strongly to the external,

unmagnetized plasma through aerodynamic drag forces, even at extremely high Reynold’s

number (Parker 1975; Choudhuri & Gilman 1987). Since the magnetic energy density of the

flux tube is small compared to the kinetic energy density of its surroundings, we consider

changes in writhe to be “driven” by external flows.

Twist changes, on the other hand, occur by a spinning motion internal to the flux tube,

which couples to the external medium only through viscosity. At high Reynold’s numbers,

such coupling is expected to be extremely weak. No pressure field, however strong, can

produce a torque on the tube (∇ × ∇p = 0), so spinning motion is believed to be driven

by magnetic forces alone (Longcope & Welsch 2000). Thus the tube plays an active role in

producing its own twist changes, and a passive role in writhe changes — the latter result

from external flows.

An example of an externally driven helicity change is the passive motion of flux under

differential rotation. Several investigations have shown that this motion produces helicity

fluxes far smaller than those observed in active regions (DeVore 2000; Démoulin et al. 2002).

Significant helicity flux must therefore be attributable either to relative proper motions of

photospheric flux elements about one another or to internal spinning motions within each

element. Observations of the former have been used to infer the axis configurations of the

underlying tube (Tanaka 1991; van Driel-Gesztelyi et al. 1994; Leka et al. 1996; Pevtsov

& Longcope 1998; López Fuentes et al. 2000). While not expressly calculated by these

authors, helicity injection of this sort probably did occur in the cases they investigated. It is

approximately correct to associate the integrated helicity flux of this kind with the emergence

of the writhed portion of the flux tube through the photosphere.

The alternative helicity source is magnetically driven, internal spinning of the flux tube

itself. Longcope & Welsch (2000) used a simplified model to show how an emerging twisted

flux tube might develop such spinning footpoint motions. Driving the spinning is the torque

caused by an unbalanced helicity density across the photospheric layer. The imbalance

arises naturally as the AR expands into the corona, progressively diluting its helicity. Even

as mass stays behind, horizontal spinning motion sends helicity into the corona. Pevtsov

et al. (2003) measured coronal twist in six emerging ARs; in five of them the observed

time evolution matched the Longcope & Welsch (2000) curve given appropriate choices of

parameters.
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The most obvious cases where internal spinning motion is directly observed are the

so-called rotating sunspots.1 Spinning motions were noted by numerous authors over the

years (Evershed 1910; St. John 1913, are among the earliest). Recently Brown et al. (2003,

hereafter BN+) used high time-cadence TRACE white light observations of seven different

sunspots to measure spin rates. Using a stack-plot technique they obtain continuous mea-

surements over many days at different radii from the umbra. Each of the seven spots exhibits

rotation with a qualitatively different time history. In one case (AR 8668) the spot rotated

steadily at ∼ 0.5 deg/hr for 5 days; in another (AR 9114) 30 hours of steady rotation (∼ 1

deg/hr) was followed by a 30-hour decline to zero; in yet another (AR 9077) the rotation

rate fluctuated wildly, even changing direction. The one spot from a recently emerged region

(AR 9004) showed a steady slow-down over 2.5 days, akin to the prediction of Longcope &

Welsch (2000).

Since both external and internal motions have been observed it remains only to quantify

their contribution to helicity flux into the entire AR. To do so we must be careful to account

for spinning in all the flux of an AR, rather than just its largest sunspot. Moreover, the

relative motions of these features will contribute helicity flux, but of the writhe-generated

variety. If the spinning contribution is found to dominate the helicity flux in most ARs, then

it is natural to think of coronal helicity as originating in the twist of the emerging flux tubes.

Otherwise it would seem that convection zone fluid motions play the leading role in creating

the helicity which finds its way into the corona.

To obtain this insight into the source of helicity we seek an observational means of dis-

tinguishing between twist-generated and writhe-generated helicity fluxes. A decomposition

of this type was proposed by Berger (1984) when he considered the rigid, horizontal motions

of isolated flux patches. (Berger (1991) and Welsch & Longcope (2003) treat slightly more

general flows.) The braiding and spinning terms of this decomposition yield the helicity

flux contributed by external and internal motions respectively. As straightforward as the

decomposition is, its only observational use was by Welsch & Longcope (2003) in finding

the braiding helicity flux in the quiet Sun. The principle obstacle to its broader application,

say to ARs, comes from the difficulty in distinguishing internal from external motion in a

photospheric field not composed of truly isolated flux patches.

An observational helicity flux decomposition would shed light into the sub-photospheric

helicity source and would also guide modeling of coronal energy storage. Energy released

in flares or coronal mass ejections seems to be converted from free magnetic energy built

1For consistency with the foregoing discussion, we would prefer to call these spinning sunspots, to em-
phasize the internal nature of their motion. The term rotating has, however, already gained broad usage.
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up as the photospheric flux distribution evolved. As it becomes possible to simulate this

process in complex three-dimensional geometries it is necessary to know which aspect of the

photospheric evolution plays the principal role in storing the free energy. Some coronal field

models (e.g. Longcope 1996) focus on relative motions of flux elements (i.e. braiding) while

others focus on the spinning of the elements.

The present work generalizes the Berger (1984) decomposition to be applicable to arbi-

trary flux distributions and arbitrary flow fields. The decomposition hinges on a partitioning

of the photospheric field into distinct unipolar regions. We present an algorithm for perform-

ing this partitioning on an extended time-sequence of magnetograms, such as those produced

by MDI. This partition defines what is meant by internal and external motions, and thus

how spinning is distinguished from braiding. While the task is not well-defined our algorithm

appears to satisfy physical expectations of such a distinction, including preservation under

evolution of the photospheric flux.

Methods have been recently proposed for decomposing relative helicity into self and

mutual contributions (Régnier et al. 2005; Démoulin et al. 2006; Low 2006). These are de-

compositions of the entire helicity integral, usually based on a partition of the coronal volume

into distinct flux tubes (Berger & Field 1984). The self helicity of one tube characterizes the

internal winding of field lines within it, while the mutual helicity of the collection of tubes

characterizes their winding about one another. This decomposition concerns the instanta-

neous configuration of the entire volume rather than motions at the boundary. As such it

is fundamentally different from our decomposition of the helicity flux into spin and braiding

based on a partition of the boundary field. While the spin helicity flux is sometimes assumed

to be the source of self helicity, there is no mathematical basis for such an association. Prop-

erly relating boundary motions to self helicity or mutual helicity requires knowledge of how

the coronal field interconnects the different photospheric flux patches (Pariat et al. 2005).

Our decomposition of helicity flux requires no such knowledge and therefore does not dis-

criminate self from mutual helicity sources.

Using our method we calculate the spin helicity and braiding helicity fluxes in several

ARs. We find that accurately measuring the spin contribution requires the highest possible

spatial resolution for both the magnetogram and the velocity map. Using lower resolution

results in an underestimate of the internal spinning contribution, partly due to the greater

smoothing of the velocity field from larger apodizing windows, but mostly due to system-

atically lower velocity values. This may have affected previous calculations of total helicity

flux, since that includes both spin and braiding.

When we analyze ARs where sunspot rotation has been previously measured we find

a spin helicity flux proportional to the rotation rate. In some cases this spin contribution
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dominates, suggesting helicity originating as a twisted flux tube. In other cases, even in

the presence of rotating sunspots, braiding is the dominant contribution to helicity flux.

Moreover, there are cases where the two contributions are of the same sign and cases where

they oppose one another. In one particular case (AR 9004) we find evidence that the spinning

and braiding is driven by a kink mode. It appears that no general statement may be made to

the origin of helicity in all cases. Nor is a single variety of photospheric stressing responsible

for energy storage in all cases. The method presented here does, however, answer these

questions in each specific case.

The paper is structured as follows. We demonstrate, in §2, our generalized decomposi-

tion using an analytic test case with known helicity flux. In order to apply the decomposition

to a sequence of actual magnetograms it is necessary to automatically identify and track the

region boundaries used to distinguish internal from external motions. We describe our algo-

rithm in §3, and demonstrate that it does a reasonable job preserving moments of the region

fluxes. In §4 we test the algorithm by comparing its spin rates to those of several of the

sunspots measured by BN+. Comparisons reveal that accurate determination of internal

flows requires high spatial and temporal resolution; lower resolution does reveal the spin-

ning motion, but underestimates its magnitude. We then consider the compositions of the

helicity fluxes for several whole ARs in §5. These cases include a broad range of different

behaviors, including a case apparently driven by external kink mode. Finally, we summarize

our method and its application in §6.

2. The General Method

The decomposition of helicity flux requires that the vertical magnetic field of the photo-

sphere, Bz(x, y, 0), be partitioned into a set of unipolar regions. We begin by assuming this

has been done, and return in the following section to demonstrate how this done in practice.

A particular region, Ra, is enclosed by a simple closed boundary ∂Ra. The field within a

given region may be characterized by its net flux and centroid location

Φa =

∫

Ra

Bz(x, y, 0) d2x (1)

x̄a
i =

1

Φa

∫

Ra

xiBz(x, y, 0) d2x (2)

where i = 1, 2 labels the horizontal vector component. The next moment describing the flux

distribution is the second rank tensor

Qa
ij =

1

Φa

∫

Ra

(xi − x̄a
i )(xj − x̄a

j )Bz(x, y, 0) d2x , (3)
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related to the traditional quadrupole moment. A simple measure of a region’s horizontal

extent is its radius of gyration

r̄a ≡
√

Tr(Qa) . (4)

We assume that all significant flux is assigned to one and only one region and take Bz = 0

everywhere outside our set of regions.

The partitioning turns out to be critical since it determines how the spin and braiding

helicities are defined. In cases where unipolar regions are clearly separated by regions of very

small field strength, it is straightforward and unambiguous. We return below to discuss the

more complex cases, but illustrate our method in a simple case: a quadrupolar configuration

shown in fig. 1, similar to that considered by Longcope & Magara (2004). The flux is clearly

separated into four regions which are numbered 1–4 (the P or N indicate polarity). Two of

the regions, P1 and N2 are initially circular, while the other two are elliptical. All four have

the same magnitude of flux; the centroids are indicated by +s and ×.

Fig. 1.— The quadrupolar configuration used to illustrate the helicity flux decomposition.

Left: The initial configuration with two circular regions, P1 and N2 and two elliptical

regions P3 and N4. The central portion, inside the dotted line, undergoes a clockwise

rotation causing P1 and N2 to rotate above the center (indicated by arrows). Right: The

state after application of a motion, vφ = C/r over an interval of time. This flow moves

the point corresponding initially to the centroid of P1 along the dashed are over an angle

ψ = 54◦. Distortion of the region has caused its centroid to move inward slightly.

We next consider a horizontal, photospheric velocity field u(x, y). The flux-weighted
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velocity within region a is given by

ūa
i ≡ 1

Φa

∫

Ra

ui(x, y)Bz(x, y, 0) d2x . (5)

If the vertical field and the regions are both advected by this flow then it is possible to show

that dΦa/dt = 0 and that the change in centroid position is given by

dx̄a

dt
= ūa . (6)

If there is some vertical flow vz across the photosphere in addition to a horizontal component

vh, these can be combined into a horizontal “pattern velocity”

u = vh − vz

Bz

Bh , (7)

which governs the advection of Bz as long as the full ideal induction equation is obeyed in

the photospheric plane (Démoulin & Berger 2003). If this pattern velocity is everywhere

defined (i.e. there is no vertical flow at polarity inversion lines) and region boundaries are

also advected by u, then Φ̇a = 0 and eq. (6) still obtains. We will henceforth assume this to

be the case, and therefore neglect possible effects of flux emergence or submergence.

We choose to evolve our example field using a simple horizontal flow field restricted to

the central disk outlined by the dotted circle in fig. 1. We take the flow to be that of a point

vortex at the origin, vφ = C/r, where the constant C, is chosen to give the rotation rate unity

at the radius where P1 and N2 are initially centered. The motion is then parameterized by

the angle ψ by which this radius is rotated. The strongly sheared flow distorts the central

regions as shown by the right panel of fig. 1. This distortion causes the centroids to move

inward and the radius of gyration to increase. By the later stages (such as the right panel

of fig. 1) the two regions become intertwined.

2.1. Helicity fluxes

The relative helicity of the coronal magnetic field is defined by the volume integral

H =

∫

z>0

(A + AP ) · (B−BP ) d3x . (8)

where BP is a potential magnetic field (∇×BP = 0) matching the photospheric vertical field

and A and AP are vector potentials for the actual field and the potential field respectively. If
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the coronal field evolves without resistivity, or other non-ideal electric fields, then its helicity

changes only due to photospheric motions according to

Ḣ = −2

∫

z=0

(u ·AP )Bz d
2x , (9)

where u(x, t) combines the horizontal and vertical plasma velocities according to expression

(7).

The horizontal components of AP (x) at the photosphere (z = 0) are directly related to

the vertical magnetic field through a Green’s function

AP (x) =
1

2π

∫

z′=0

ẑ× (x− x′)
|x− x′|2 Bz(x

′) d2x′ . (10)

We can decompose the full vector potential into a sum of contributions from each region by

restricting the region of integration

Ab
P (x) =

1

2π

∫

Rb

ẑ× (x− x′)
|x− x′|2 Bz(x

′) d2x′ . (11)

This is valid for x inside and outside Rb. The full vector potential is then AP =
∑

b A
b
P

Using these components the helicity flux can then be decomposed into a sum of two

terms

Ḣ = −2
∑

a

∫

Ra

[Aa
P (x) · u(x)]Bz(x) d2x

− 1

π

∑
a

∑

b6=a

∫

Ra

∫

Rb

ẑ× (x− x′) · u(x)

|x− x′|2 Bz(x
′)Bz(x) d2x′d2x , (12)

which are the spin and braiding term respectively (Welsch & Longcope 2003). The first

term is a sum of spinning helicity from each of the regions independently. Each term can be

written using an average rotation rate, ω̄a

Ḣa
sp = −2

∫

Ra

[Aa
P (x) · u(x)]Bz(x) d2x ≡ − Φ2

aω̄a

2π
. (13)

This expression is gauge-invariant and well defined since it corresponds to the total helic-

ity which would be injected if Ra were alone on the surface. If the motion within Ra is

combination of translation and rigid rotation then ω̄a will be the rotation rate, regardless of

how the flux is distributed (Berger 1984). For a general flow field, however, expression (13)

defines a mean angular rotation ω̄a for the region,

ω̄a ≡ 4π

Φ2
a

∫

Ra

[Aa
P · (u− ūa)]Bz d

2x , (14)
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where the mean velocity has been removed using the fact that a constant velocity field

produces zero in expression (13).

Figure 2 illustrates the procedure through its application to region P1 at the end of its

evolution (ψ = 90◦). The right panel shows the flow field within the region R1. Integrating

this over the region as eq. (5) gives the mean region velocity, ū1 which is mostly azimuthal

(clockwise) but contains an inward radial component. Subtracting this from u(x, y) yields the

flow field plotted on the right. Performing the integral in eq. (14) gives the value ω̄1 = −0.63

at this time. Performing these steps over the entire sequence yields the curves shown in fig.

3. The spin rate ω̄1 (solid curve) begins very small, perhaps because the flow field itself is

curl-free except at the origin. Over time it become increasingly negative until it reaches the

value ω̄1 = −0.63 of fig. 2. The azimuthal rotation rate is initially ūφ/r = −1, chosen in the

definition of u(x, y). As the region wraps about the origin, however, its azimuthal rotation

slows and the centroid approaches the origin.

Fig. 2.— The velocity field within region P1 at ψ = 90◦ Left: Arrows showing the field

u(x, y) within the region. The grey scale is Bz(x, y) and the solid curve outlines, R1. A + is

plotted at the centroid and a ∗ at the origin about which the flow circulates. Right: The

same but for the field with the mean velocity removed: u− ū1.
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Fig. 3.— Various frequencies from the moments of region P1 as the magnetic field evolves.

The functions are plotted against the rotation angle ψ. Solid curve is the mean spin rate,

ω̄1, describing its helicity injection. The dashed and dash-dotted curves are the azimuthal

rotation rate, ūφ/r and radial expansion rate, ūr/r respectively. In the plot, these are labeled

as v rather than u.

The double sum in eq. (12) is the exact braiding helicity for this partition

Ḣbr = − 1

π

∑
a

∑

b6=a

∫

Ra

∫

Rb

ẑ× (x− x′) · u(x)

|x− x′|2 Bz(x
′)Bz(x) d2x′d2x . (15)

The integrals can be expanded in powers of the separations between regions Ra and Rb to

yield a simplified expression approximating the braiding helicity

Ḣbr ' − 1

2π

∑
a

∑

b6=a

ΦaΦb
ẑ× (x̄a − x̄b) · (ūa − ūb)

|x̄a − x̄b|2 . (16)

This neglects terms which are smaller by factors typically ∼ r̄2
b/|x̄a− x̄b|2 or ∼ r̄2

a/|x̄a− x̄b|2.
It involves only the rates at which the different centroids braid about one another.

Figure 4 shows the various helicities calculated by integrating the time derivatives Ḣ.

Integrating the exact helicity flux, eq. (9) gives the total helicity, plotted as a solid curve.

Integrals of the spin term, eq. (13) and the approximate braiding term, eq. (16), are plotted

as +s and ×s respectively. The ∗ show the sum of these contributions, which approximates

the total helicity. The discrepancy between the ∗ and the solid line is due to approximating

the braiding helicity contribution by the motions of the region centroids. The exact braiding

helicity, eq. (15), is plotted as a dashed curve. Adding this to the spin helicity (+s), which
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is not approximated, will yield the solid curve exactly. The discrepancy between the dashed

curve (exact) and × (approximate) is due to the neglect of terms higher order in r̄a/|xa−xb|,
involving the quadrupole moments. The growing significance of these contributions could be

predicted by the convergence of d, the separation between P1 and N2 centroids, and their

r̄, in the bottom panel.

2.2. Merging and Fragmentation

The decomposition relies on a partitioning step which defines a particular set of re-

gions. Using a different partitioning of the same field will result in a different decomposition.

To illustrate the effect of different partitioning consider modifying an existing partition by

merging two regions into one new one: Ra = Ra1

⋃Ra2. Straightforward application of eqs.

(1) and (2) show that

Φa = Φa1 + Φa2 , x̄a =
Φa1

Φa

x̄a1 +
Φa2

Φa

x̄a2 ,

as one might expect. The mean angular rotation of the merged region is

ω̄a =
Φ2

a1

Φ2
a

ω̄a1 +
Φ2

a2

Φ2
a

ω̄a2 +
2Φa1Φa2

Φ2
a

dθ12

dt
,

=
dθ12

dt
+

Φ2
a1

Φ2
a

(
ω̄a1 − dθ12

dt

)
+

Φ2
a2

Φ2
a

(
ω̄a2 − dθ12

dt

)
(17)

where θ12 is the polar angle of the separation x̄a2 − x̄a1.

According to (17), the spin helicity of Ra is the sum of the spin helicities of its compo-

nents, Ra1 and Ra2 plus the part of the braid helicity involving those two about one another.

The braiding helicity of the new partition is naturally decreased by the same amount,

∆Ḣbr ' − 1

π
Φa1Φa2

dθ12

dt
. (18)

Merging the two regions thereby converted the braiding helicity into spin helicity. From the

final expression in (17) it is apparent that if all of region a rotates rigidly (so ω̄a1 = ω̄a2 =

dθ12/dt), then the process of merging simply redefines the braiding of the two elements into

the spin of the composite.

Conversely, fragmenting a region into two parts will transform some of the original spin

helicity into braiding helicity. If fragmentation were applied recursively to the fragments –

breaking pieces into ever smaller pieces – the total spin helicity contribution would vanish

and the entire helicity flux would become braiding helicity. This is the conceptual limit
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Fig. 4.— The helicity estimated for the vortical advection of the quadrupolar test case versus

the angle ψ of rotation at the initial centroids. Top: The spin (+) and braiding (×) helicities

and their sum (∗) as a function of ψ. The exact injected helicity, calculated using eq. (9),

is shown by a solid line. The braiding helicity shown by ×s is calculated from eq. (16);

this is only an approximation of the exact braiding helicity (dashed curve) from eq. (15).

Bottom: The radii of gyration of the inner regions (solid) and outer regions (dash-dotted)

as a function of ψ. The separation between the centroids of the inner regions is plotted as a

dashed line.
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in which every field line becomes its own flux tube and the total helicity quantifies their

interlinking. The limit is illustrative, but not practical since we wish to distinguish between

helicity generation mechanisms operating internally and externally to a sub-photospheric

flux tube.

3. Magnetogram Partitioning

We apply the above algorithm to sequences of magnetograms from MDI (Scherrer et al.

1995) at either high resolution (pixels 0.′′6× 0.′′6, within a restricted field) or low resolution

(2′′× 2′′ over the entire solar disk). In either case we begin with a data cube constructed by

extracting rectangular sections enclosing the principal flux in the AR. Following Berger &

Lites (2003), the magnetic field strength in each pixel is multiplied by a calibration factor of

1.56. To reduce the noise in the magnetic field measurement 5 successive 1 min magnetograms

are added thereby reducing the noise to ≈ 9 G. Assuming the magnetic field is radial at the

photosphere, the line-of-sight component is divided by the cosine of the angle from the disk

center to convert to vertical field.

Local Correlation Tracking is performed on the sequence using an apodizing window of

7′′ on the low-resolution and 4.′′5 on the high-resolution sequence (November & Simon 1988).

Correlation tracking is applied to pairs of magnetograms separated in time by 1 hr for the

low-resolution and 20 min for the high-resolution. Only pixels whose magnetic field strength

is larger than 50 G are correlated; this reduces the computing time as well as prevents noisy

quiet sun pixels from affecting the velocities. Parameters in the LCT steps were chosen after

experimentation. It was found that larger apodizing windows were best used in conjunction

with larger time steps. The size of the apodizing window, and therefore of the time step,

was also dictated by pixel size.

The critical step in applying techniques outlined in the previous section is to partition

the active region field into distinct flux concentrations. To be useful in characterizing AR

evolution it is necessary to track the evolution of these flux concentrations over a long time

interval, preferably of order days. The approach we present here builds on a gradient based

tessellation scheme (Schrijver et al. 1997; Hagenaar 1999; Barnes et al. 2005). One partition

consists of all pixels which are strictly downhill from a local maximum.

This scheme works well on any single magnetogram, but when applied to a time series, it

can lead to large variations in the partitioning from one time step to the next. In particular,

it is frequently the case that a partition assigned to a single maximum at one time will, at

the next time, contain two local maxima splitting the partition into two. To mitigate effects
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such as this, we use an approach, similar to Barnes et al. (2005), of adjusting each partition

to minimize its differences with a reference. Barnes et al. (2005) constructed a reference by

averaging an approximately hour-long time series of magnetograms with a cadence of a few

minutes. In the present case, that approach will no longer work because we are interested

in time series lasting longer than a day, with cadences of hours rather than minutes.

Instead of a time-averaged reference for the entire time series, we construct a new

reference for each magnetogram by advecting, with the LCT velocity field, the partition

from a neighboring time step. For examples presented here, which contain regions of rapid

flux emergence, we find it preferable to start with the last time step, and advect the partitions

backwards in time. Instances where a new source region appears will seem, in the reversed

time, to represent the disappearance of an existing, labeled partition.

For the initial time we first smooth the field by performing a potential-field extrapolation

to a height of 1 pixel. This reduces the number of local maxima in |Blos| resulting from noise.

The gradient based tessellation scheme is then applied to assign a label to each pixel with a

field strength exceeding 50G.

This results in such a large number of partitions (typically several hundred) in regions of

plage as to be unwieldy for subsequent calculations. To simplify the plage while maintaining

the structure in sunspots, we apply a saddle point merging. That is, we evaluate the field

at the saddle point between adjacent partitions, and if it is within 300 G of either maxima

of the two partitions, the smaller flux partition is assigned the same label as the larger flux

partition. With this criterion, we are able to simplify the plage until a tractable number

of sources is obtained (generally less than 100). Our hope in this approach is that the

majority of the helicity injected into the corona comes from regions of strong field, so the

exact representation of weak fields is not crucial.

The prototypical case studied by BN+ was the leading sunspot in AR 9114, which they

followed over 8–10 August 2000. This same region turns out to be a good test-bed for our

method since sequences of MDI magnetograms exist at both of the instrument’s resolutions.

We use a low resolution sequence running from 16:24 on 2000-Aug-7 to 22:03 on Aug-11 and

a high-resolution sequence covering the period from 15:12UT on 2000-Aug-8 to 1:53UT on

Aug-9.

Figure 5 shows partitions from approximately the same time in each sequence. Although

the regions and the naming do not coincide between the different data sets, in each one P01

designates the main leading flux concentration which includes the sunspot measured by

BN+. Note that the region P01 in the low-resolution sequence encompasses not just the

region P01 in the high-resolution sequence, but also several other small partitions. The
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low-resolution sequence includes flux that is outside the field of view for the high-resolution

sequence.

The partition for the low-resolution case is summarized by the two histograms in fig. 6.

The histogram of total flux, on the left, shows that ∼ 85% of the flux in each polarity falls

above the threshold field strength of 50G. All but a very small portion of this is assigned to

partitions; the little not included belonged to regions deemed too small to matter. It is clear

from the histogram that there is more total flux of the leading (positive) polarity within our

window, and that it is systematically stronger.

The histogram on the right of fig. 6 shows the flux assigned to each of the different

partitions, at the time being considered. The largest by far is P01, by itself containing more

than half of all the positive polarity in the AR (1.1× 1022 Mx). This region contains a large

sunspot where MDI magnetic field measurements are known to be less sensitive (Berger &

Lites 2003). In the present case there is 3.0× 1021 Mx, above B = 1700 G, all of it positive.

Integrating only the amount by which the reported field exceeds this value yields 5.8× 1020

Mx. Since the region P01 contains so much weaker surrounding flux our calculation of

its total flux is probably only slightly compromised by insensitivity to strong field. The

integrated field excess is about 5% of the total flux, so we expect any sensitivity-related

error to be of similar size (Longcope et al. 2005).

To be applicable to helicity calculation, the partitions must follow the photospheric field.

To ascertain how faithfully they do, we test the consequence of the tracking, eq. (6): the

centroid velocity of a partition, dx̄a/dt, will match the flux-weighted average velocity within

the partition, ūa.

To accurately determine the centroid velocity we fit the centroid positions with a con-

stant velocity over several successive time steps. Doing so for our partition of AR 9114 shows

a qualitative tendency for the velocities to be of similar magnitude and in a similar direc-

tion, as shown by the arrows in fig. 5. The scatter plot shown in Figure 7 provides a more

quantitative comparison. The slope of the regression line is close to unity for data sets at

both resolutions, indicating an absence of systematic difference between the two velocities.

For the low-resolution example (left), a constant velocity fit to the centroid position was

performed over 7 times, spanning an interval of about 9 hours. For the one time shown, the

resulting velocity had a correlation coefficient of ρ = 0.73 with ūa. For the other times in

the series, the values for ρ typically fall in the range 0.60 . ρ . 0.75, indicating that the

correlation between the two methods accounts for about half of the scatter when 7 times are

used.

The mean absolute deviation between the LCT and centroid speeds is 54 m s−1 when
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Fig. 5.— The partitioning of AR 9114 for (top) a low resolution magnetogram and (bottom)

a high resolution magnetogram, taken at approximately the same time. In both cases axes

are labeled in arc-seconds from disk center. The low resolution image covers a larger field

of view. The dotted line bounds the region in which the LCT velocity is determined. For

partitions entirely within this region, the velocities as determined by both LCT and fitting

the location of the centroid are shown as arrows, with length proportional to the speed. There

is qualitatively good agreement in the magnitude and direction for both cases, although note

that the speeds in the low resolution case tend to be smaller than in the high resolution case.

The region labeled P01 contains the sunspot considered by BN+.
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Fig. 6.— Histograms summarizing the partitioning of the low resolution magnetogram from

fig. 5. (left) A cumulative histogram of the positive (negative) flux is shown as a solid

(dashed) curve. The threshold level of B = 50G is indicated by a + (×). Their vertical

placement indicates the amount included in the partitions, after discarding small regions.

(right) The amount of flux in each individual region is indicated by vertical bars decreasing

rightward (leftward) from the center for positive (negative) elements. The cumulative flux

is indicated by the stair-step curve above the bars.

all partitions are given equal weight, but falls to 28m s−1 when the mean is weighted by

the flux in the partition. For the entire time series, the flux weighted absolute deviation is

typically less than 35m s−1. It is difficult to estimate the uncertainty in the LCT velocity,

but by considering the scatter about the best fit line we estimate that a typical uncertainty

in the centroid velocity is 25m s−1.

Calculating centroid velocities using linear fits over time intervals either substantially

shorter or longer generally resulted in worse agreement between the LCT and centroid veloc-

ities. For longer intervals, the motion of the region can probably not be well approximated

as motion at constant velocity. For shorter times, variations in the partition result in larger

errors (Barnes et al. 2005). This is evident from the larger uncertainties in smaller partitions,

whose centroid location is more sensitive to changes in the partitioning.

For the high-resolution example on the right of fig. 7, a line was fit to the centroid

position at 10 different times, spanning an interval of about 3.5 hours. The correlation

coefficient for the case shown is ρ = 0.77, and for other times the values of ρ typically fall

in the range 0.65 . ρ . 0.80. There are more points than in the low-resolution case, owing

to the larger number of partitions for high-resolution. As in the low-resolution case, fitting

centroid sequence over longer or shorter time intervals resulted in worse agreement with LCT

velocities.
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Fig. 7.— Two versions of the velocity of each partition. The centroid velocity, dx̄a/dt, vs

the flux-weighted average of the LCT velocity at each pixel, ūa. The x-component of the

each velocity is shown with a +; the y-component is shown with a ×. The dashed line is the

regression line. The high resolution case (right) has a slightly higher correlation coefficient

(ρ = 0.77) than the low resolution case (right, ρ = 0.73), indicating better agreement between

the two ways of determining the velocity, even though the mean absolute deviation is larger

due to the generally larger speeds in the high-resolution case.
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The mean flux weighted absolute deviation for the case shown is 45 m s−1, and for other

times it is typically 35–45 m s−1. Thus, even though the fit is better, the residual is larger.

This is due to speeds that are typically larger than for the low-resolution data. The mean

centroid speed for the low resolution case is 119 m s−1 compared to a mean centroid speed

of 271 m s−1 for the high resolution case. For the time series, it is typical for the mean speed

calculated from the high-resolution data to be approximately double the mean speed for the

low-resolution data.

There is a general tendency for LCT to yield higher speeds in each pixel of a high-

resolution magnetogram than it does in a low resolution magnetogram. In histograms of

velocity magnitude (speed), the high resolution data shows a tail extending from 0.5 to

1.2 km/sec which is absent from low resolution data. Berger et al. (1998) and Chae et al.

(2004) demonstrated, using intensity images and MDI magnetograms respectively, that the

root-mean-squared LCT velocity scales inversely with the width of the apodizing window.

Since the minimum possible width of an apodizing window is fixed by the resolution, the

high resolution data will yield larger velocity.

4. Benchmarking with Rotating Sunspots

The foregoing section tested the centroid velocities by comparing them to flux-weighted

LCT velocities. In order to test the spin rate calculation we turn to active regions containing

rotating sunspots previously analyzed by BN+. Their study followed penumbral features

in TRACE white light images in order to determined the rates of rotation over extended

periods and as a function of radial distance from the umbral center. Annuli of a given radius,

centered on the umbra, were unwrapped and formed into a stack plot of azimuthal angle

versus time. Slanted streaks were then identified as moving features, and their slope used

to determine a rotation rate. This measurement is sensitive to different structure and a

different layer of the atmosphere than the magnetogram. We expect, however, that rotation

of white-light features is indicative of a general rotation which should also be present in the

magnetic field.

Figure 5 shows the partition from both low-resolution (top) and high-resolution (bot-

tom) sequences of one case studied by BN+ (AR 9114). Although the regions and the

naming do not coincide between the different data sets, P01 designates in each one, the

main leading flux concentration which includes the sunspot measured by BN+. Note that

the region in the low-resolution sequence encompasses what are, in high-resolution, several

other regions such as P04, P08 and P09.
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Comparisons can be made between the mean spin rate, ω̄P01, in our region P01 and

the sunspot rotation rates, θ̇, calculated in BN+. Figure 8 shows the velocity field, u− ū,

within region P01. Each shows a counter-clockwise (positive) sense of spin, especially near

the Northern boundary. It is evident from a comparison that the high-resolution data (bot-

tom) produces larger velocities than the low-resolution data (top). Averaging the azimuthal

rotation rate, uφ/r within each centroid-centered annuli in the image gives the rotation pro-

files shown in fig. 9. For comparison we plot the rotation rate profile, θ̇(r) from fig. 5b of

BN+. Their stack-plots made from TRACE white light images were less sensitive to um-

bral motions, consequently their profile decreases at small radii. The LCT-derived profile,

especially at high resolution, suggests rigid rotation at central radii.

It is evident in fig. 8 that the location of the centroid is not precisely the same in the

high and low resolution cases. This is primarily a result of the inclusion of additional flux

in the low resolution partition for source P01 that is part of separate partitions in the high

resolution case. It is to be expected that the center of the sunspot as identified in BN+

will be at yet a third location. However, by considering different ways of partitioning the

low resolution data, we find that the mean spin rate, ω̄P01, and hence the spin helicity are

not greatly impacted by shifts in the centroid location. This is particularly encouraging

because it implies that our results are not sensitive to small changes in the partitioning, as

are inevitable when tracking a flux concentration over a long time interval.

Figure 9 shows that the curves from BN+ compare more favorably to the high-resolution

data set than the low-resolution set. The former appears to match white light data outside

10′′, while the latter appears to be systematically lower by a factor of two. The helicity

injection will ultimately depend on the single rotation rate, ω̄, derived from the velocity field

according to expression (14). The value for each case is plotted as a horizontal dashed line.

The high-resolution value, ω̄ ' 1.4 deg/hr, is a fair representation of the overall profile. The

low-resolution value, ω̄ ' 0.5 deg/hr, is lower partly due to slower rotation of the outlying

portions, absent from the high-resolution partition, and partly due to its generally lower

velocities. BN+ summarize their profile with an “average” rate of θ̇av ∼ 1.1 deg/hr and

a “penumbral” rate for θ̇pen ∼ 2 deg/hr. The former is intended to represent the overall

profile, in a similar spirit to our quantity ω̄. We therefore use this value in our comparison.

The rotation rate, ω̄, is directly related to helicity injection. Figure 10 compares this

to the rates reported in BN+ for the leading sunspot in AR9114. During the long, low-

resolution dataset (left) ω̄ evolves a similarly to θ̇av from BN+: gradually increasing until

t ∼ 55, after which the rotation slows to zero by t ∼ 80. The tendency of the low-resolution

data to underestimate the rotation rate, noted for the profile fig. 9, appears to persist for

the entire sequence.
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Fig. 8.— The velocity vectors overlaid upon the low-resolution magnetogram (top) and

high-resolution magnetogram (bottom). The reference arrows at the bottom of each panel

are in terms of km s−1. The +s mark the flux-weighted centroids, and dotted circles are

drawn at radii of 10′′, 20′′ and 30′′ from centroid.
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Fig. 9.— Profiles of rotation rate versus radius for region P01 of region AR 9114 using

(left) low resolution magnetogram partition and velocity (right) using high resolution mag-

netogram and velocity. The vertical bar in the plot is an error in estimating the rotation

rate. The rotation rate is measured at fixed radius (as shown in fig. 8) with flux weighted

centroid as a center. The horizontal dashed line is the mean rotation rate, ω̄P01, defined

according to expression (14).

Fig. 10.— (a) Spin helicity and (b) rotation rate for the positive region P01, (left) using

the sequence of low-resolution (full-disk) magnetograms and (right) using high-resolution

magnetograms. These are plotted versus time in hours after 00:00UT Aug-07. The results

of the LCT tracking are indicated by +s. The solid curves in (b) are the “average” rotation

rate of the white-light sunspot, taken from BN+, while the solid curve in (a) is the total

spin helicity flux, Ḣsp, for all flux regions in the magnetogram.
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The high-resolution data (right), on the other hand, provides a superior match to the

measurements of BN+. Over its short duration both the TRACE-measured rotation rate

and the LCT rate remain steady at a bit over 1 deg/hr. Indeed, ω̄, remains systematically

higher than θ̇av, as it did in the profile. The +s in the lower panels in fig. 10 show the

spin helicity flux attributable to the rotation of P01, namely −ω̄P01Φ
2
P01/2π. The helicity

decomposition finds rotation rates for each of the regions, not just the large sunspot. Each

of these contributes to the total spin helicity flux, plotted as the solid curve. The very close

agreement between this total and the contribution of P01 alone is due to the overwhelming

dominance of that single region in the total flux (see fig. 6). The underestimation of rotation

rate in the low resolution sequence (left) originates in an underestimation in the helicity flux,

by at least a factor of 2 in the present case. Since spin helicity is a contributor to the total

helicity flux we conclude that using low-resolution magnetograms will result in a systematic

error in its calculation.

We believe that the underestimation in low resolution data is not simply a result of the

longer (1 hr) time difference and broader (7′′) apodizing window size used. To establish this

we computed ω̄P01 from low and high resolution data using a range of time steps, down to

15 min, and apodizing window sizes, down to 5′′ for low and 3.6′′ for high resolution. For a

given data set the spin rate scaled inversely with apodizing window in agreement with the

studies of Berger et al. (1998) and Chae et al. (2004). When, however, both data sets are

analyzed using the same apodizing window, 6′′ for example, the high resolution data yields

a rotation rate almost twice as high as low resolution data. The most likely reason for this

discrepancy is the tendency, previously noted, for LCT to produce higher velocity values

from high resolution MDI data. Therefore, in order to reduce noise that we continue to use

1 hr and 7′′ for LCT on low-resolution data.

We also managed to rule out the possibility that the saddle point merging step in the

partitioning led to the discreapancy in the rotation rate. We did this by experimenting

with saddle point merging values other than 300 G. Using, 100 G or 200 G instead yielded

partitions of the low resolution data resembling those of high resolution data, but still with

systematically lower spin rates.

Of the other cases considered by BN+ we obtained high-resolution MDI sequences for

ARs 9077 and 10030, and analyzed them in the same manner just described. In both cases

the rotation rates of the sunspot-enclosing region agreed with BN+ at a level similar to

the high-resolution case of 9114 just described. Figure 11 summarizes the comparisons by

plotting ω̄ versus θ̇av from BN+, for each time in our sequence. Since our values are spaced at

intervals of 1 hr in the low-resolution and 20 minutes in the high-resolution magnetograms, we

averaged the BN+ data and high-resolution data points over 1 hr interval for the purposes of
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comparison. The pairs of corresponding rotation rates lie in the general vicinity of equality

(the dashed line) for the high-resolution cases (4, ¦ and ∗). The low-resolution values

(+ and ×) are almost all underneath the dashed line, indicating that the rotation rate is

systematically underestimated. The data cluster about a line, but not tightly enough to be

characterized as underestimation by a simple factor.

Based on these data we conclude that the nominal rotation rate, ω̄, corresponding to

spin helicity injection, is a reasonable proxy for the rotation rate of a sunspot. Conversely,

we also conclude that observed sunspot rotation at θ̇ is accompanied by a helicity flux

Ḣ = −θ̇Φ2/2π. This will not, however, be the only contribution to the helicity.

5. Decomposition of helicity flux

5.1. AR 9114

Figure 12 shows the total spin helicity (+) and braiding helicity (×) from the decompo-

sition of the longer, low-resolution sequence for AR 9114 discussed in the previous section.

(The total spin helicity flux, Ḣsp matches the solid line in the (left) of fig. 10a.) The sum

of these contribution is shown with a ∗, while the exact total, from expression (9), is shown

by a solid curve. The last two are not equivalent due to the higher-order terms neglected

when approximating braiding helicity, eq. (15), with (16). They are, however, very close

suggesting that the neglected terms are not very significant in the present partition.

Our calculations yield helicity fluxes between pairs of magnetograms closely spaced in

time (0.25 to one hour apart). There are, unfortunately, a few gaps exceeding 4 hours in the

data sequence. We choose not to apply LCT across the gaps. The partitioning does appear

relatively consistent across them, however, we do not attempt to calculate either braiding

or spin helicity during the gaps. The net helicities, shown in the top panel, are found by

integrating helicity fluxes. We do not perform this integral across the gaps, but instead take

the conservative approach of beginning the post-gap integral at the value from before the

gap. For cases of relatively steady injection this will underestimate the net helicity injection.

Plots of the spin and braiding flux contribution, in the lower panel of fig. 12, are accom-

panied by a smoothed curve (dashed line) calculated using a 9-point box-car average. Under

the assumption that the true helicity flux within an AR varies somewhat slowly, we consider

the deviation from this curve by the individual measurements (+s and ×) to represent in-

trinsic noise in the technique. We believe the principle source of this noise is the partitioning

algorithm (Barnes et al. 2005), and quantify by σsp and σbr the root-mean-square deviation

from the smoothed curve. (The window width of nine points was chosen by eye; other rea-
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Fig. 11.— Comparisons of rotation rates derived by BN+ and the present LCT analysis.

High-resolution data sets for three different ARs and low-resolution data sets for two of them

are plotted as different symbols (+: low-resolution 9114; ∗: high-resolution 9114; ¦: 9077;

4: high-resolution 10030; and × low-resolution 10030).
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Fig. 12.— Summary of the helicity flux (bottom) and its integral (top) into AR9114 using

the low-resolution data set plotted versus time in hours from 00:00UT on Aug-07. The total

is indicated by a solid line, its decomposition into spin and braiding components is indicated

by + and × respectively, and the sum of these is shown as a ∗. Vertical dotted lines in the

bottom panel designate the interval over which Ḣ was averaged. The values averaged over

the first interval are indicated by a × and + to the left of the actual data. Each of the

average values is bracketed with an error bar equal to the error in a single measurement.
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sonable choices yield almost the same noise levels). In the present case we find σsp = .037

and σbr = .030, in units of 1042 Mx2/hr. These values are indicated by error bars to the left

of the data in the lower panel.

To further clarify the roles of spin and braiding helicity flux in the development of AR

9114, we have averaged them over two distinct intervals. During the first interval, t ∈ (17, 35),

we find 〈Ḣsp〉 = −0.12± .007 and 〈Ḣbr〉 = −0.08± .009, once again in units of 1042 Mx2/hr.

These values are indicated within the error bars, however, since they are means their error

is much smaller than the error bars, which depict the error in individual measurements. We

may conclude that the spinning of the sunspot in P01 is the primary contributor of helicity,

but the motion of surrounding flux contributes helicity of the same sign. At this point we

should recall that the spin helicity is underestimated, by at least a factor of two, by these

low-resolution magnetograms. If the braiding helicity is more accurately calculated then the

spin helicity contribution is therefore even more dominant than our numbers suggest.

The second interval, t ∈ (62, 82), is a time when the rotation rate of the sunspot

is slowing down. The declining spin seems to be compensated by an increasing braiding

contribution. The averages during this interval are 〈Ḣ〉sp = −0.08 and 〈Ḣ〉br = −0.14.

If we assume the spin helicity is once again underestimated, then the braiding is at least

comparable to spin in the helicity injection. Notably both contributions are always for the

same sign for this AR.

By the end of the 100-hour sequence the net helicity of AR 9114 has changed by at

least ∆H = −15 × 1042 Mx2; the change could be greater since we did not include possible

contributions during the data gaps. It appears that the helicity flux was almost equal parts

spinning and braiding in this particular case. During this time the sunspot penumbra rotated

' 75◦, spinning as fast as 3 deg/hr at times (BN+). The LCT-derived rotation rate, ω̄,

is typically smaller than this, and its integral is ' 21◦ over the entire time. Putting this

counter-clockwise turn into the 1.1 × 1022 Mx of flux composing region P01 will introduce

∆H ' −7× 1042 Mx2 all by itself.

5.2. Other cases

We have analyzed five other data sets of evolving ARs to find their spin and braiding

helicities. These analyses, six in all, are summarized in Table 1. Time series of most of them

are plotted in fig. 13, following the style of 12. Five of the six ARs (9004, 9114, 9077, 9354

and 10030) include rotating sunspots analyzed by BN+.

The previous section showed that low-resolution data systematically underestimates
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AR beginning dur’n lat res Φlead 〈Ḣbr〉 〈Ḣsp〉 σbr σsp

[ NOAA ] [ hrs ] h/l [1021] [1042Mx2/hr]
9002/04 2000 May 18 91.2 N15 l 47 −.16± .04 +.04± .02 .068 .091

9077 2000 Jul 13 33.6 N12 h 32 −.29± .02 −.05± .004 .08 .015
9114 2000 Aug 7 101.6 N06 l 18 −.08± .009 −.12± .007 .037 .030
9354 2001 Feb 21 49.0 S08 l 11 −.04± .01 −.04± .007 .037 .021
10030 2002 Jul 15 33.7 N16 h 33 0.0± .01 −.24± .006 .085 .039
10696 2004 Nov 6 40.0 N08 l 21 −.36± .01 −.14± .009 .051 .041

Table 1: Summary of the ARs for which helicity decomposition was performed. Helicity flux

rates were averaged during a stable period indicated in figs. 12 and 13. If more than one

period was considered, the table lists results from the first.

spin helicity contributions. Unfortunately, high-resolution data are available for relatively

few ARs, and never for sustained periods. The smaller high-resolution window misses many

ARs completely and even those it catches remain within the window for no more than two

days. In order to gain at least some insight into long-term (many day) helicity-flux trends for

a variety of regions it was necessary to include low resolution cases as well. When interpreting

these data it must be borne in mind that the spin helicity contribution has probably been

underestimated.

Even this small, and non-representative, sample includes an extraordinary diversity

of behaviors. In some regions (9114 and 10030) spin dominates braiding, while in others

braiding dominates spin (9002/04, 9077 and 10696). The spin and braiding contributions

are sometimes of the same sign (9114, 9354 and 10696) while they can also oppose each

other (9002/04). In the case of the complex 9002/04 there is an initial period of braiding

dominance (t ∈ (5, 20) listed in the table) followed by a period of spin dominance (t ∈ (40, 60)

where 〈Ḣsp〉 = +0.35 and 〈Ḣbr〉 = −0.10), and then a final period of braiding dominance.

Since the contributions in this case are also of opposite sign the total helicity flux changes

sign each time the roles reverse. The total helicity injected in the end is small, and of the

sign opposite to the helicity injected by the rotating sunspot.

The partitioning errors are generally small enough so that averaging ∼ 10 measurements

will yield a mean helicity flux with error . 2 × 1040 Mx2/hr. This attests to the stability

of the partitioning, since its fluctuations are believed to be the greatest source of noise

(Barnes et al. 2005). For this reason, and also due to their generally higher velocities, the

high-resolution sequences do not always have the lowest noise (see e.g. AR 10030).
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Fig. 13.— Time histories of helicity injection for 9002/04 (top left), 10696 (top right) 9077

(bottom left) and 10030 (bottom right). Each plot has the same format as fig. 12.
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5.3. AR complex 9002/9004

The case of AR 9002/04 is a particularly interesting one since it comprises a pair of ARs

from which one (AR 9004) is emerging. The partition of the complex, shown in fig. 14, has

one large region, P01, which includes the leading sunspot of AR 9002. The smaller AR to

the South, AR 9004, includes the negative spot (N03) which BN+ observed to be rotating,

clockwise. The sunspot rotation is increasing steadily throughout May-18, up to 2 deg/hr,

after which it decreases more rapidly. We find that both polarities of AR 9004 (N03 and

P02) spin. The positive polarity, P02 begins a rapid clockwise spin at about 16:00 May-19

(t = 40, see fig. 15), which changes steadily into counter-clockwise spinning at ω̄ ' 1 deg/hr.

The polarities of the older region (AR 9002), in contrast, have no measurable rotation at all.

Fig. 14.— Partitioning of the magnetogram containing ARs 9002/04. On the left is the

MDI magnetogram (scaled between ±1000 G) with the partition boundaries represented.

The centroids of the largest regions are designated and labeled. On the right are histograms

of the partition fluxes as in fig. 6.

The flux emergence in AR 9004 is slightly more complex than the basic bipolar scenario.

The region was at least partly formed when it rotated onto the disk on May-15. As it became

clearly visible on May-16 and May-17, it appeared stable and closely aligned with the equator

(θ = 180◦). Then on May-18 the fluxes in its polarities began increasing, as shown in fig.

16. The positive and negative fluxes both increase approximately linearly beginning and

ending at slightly different times: the positive polarity from t = 20 to t = 60 (hours from

00:00 May-18) and the negative from t = 10 to t = 55. After reaching their maxima

(max Φ+ = 15× 1021 Mx and max Φ− = 12× 1021 Mx), they begin to break up, causing the

flux in the large regions to decrease. During their linear phase the fluxes change at about
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Fig. 15.— The spin rates, ω̄a (top), and helicity fluxes, Ḣa
sp (bottom) from several of the

larger regions in 9002 and 9004, labeled in fig. 14. These are regions from 9002 are P01

(+) and N02 (¦) and from 9004 are P02 (×) and N03 (4). Each region’s rotation rate

is accompanied by a dashed curve smoothed using a 9-point smoothing window. The solid

curve in the lower panel is the total spin helicity, Ḣsp from all sources.



– 33 –

the same rates: Φ̇+ = 0.14× 1021 Mx/hr and Φ̇− = 0.13× 1021 Mx/hr.

Fig. 16.— The evolution of flux (top) and polar separation (bottom) in AR 9004. These are

calculated within the tangent plane, and include all of the significant regions of each polarity

composing that AR. Dashed lines are the linear fits used to calculate the rates of change Φ̇±
reported in the text.

The separation between the centroids of the polarities decreases at ḋ = −150 m/sec

until about t = 20 (d = 33 Mm) and thereafter increases at the leisurely rate of ḋ = 37 m/s.

The converging phase occurs at a tilt angle of roughly θ = 150◦, a sense consistent with

Joy’s law angle. As the flux emergence begins, at t = 20, the polarities begin to circle about

one another until they are oriented almost perpendicular to the equator (θ = 90◦). It is

this clockwise braiding motion that is responsible for much of the negative braiding helicity

injection.

The approaching polarities, rapid rotation away from the Joy’s law tilt, and opposing

spin and braiding injections all suggest that the evolution is driven by a kink instability
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(Linton et al. 1998). Relative motions of polarities have been used previously to infer the

kinked flux tube axis (Pevtsov & Longcope 1998; López Fuentes et al. 2000). Our helicity

decomposition provides additional information about the process. The different time histo-

ries of the spin and braiding rates is difficult to reconcile with a simple rigid motion of a

kinked tube across the photosphere. The delayed spinning of the positive pole suggests that

the kinking had occurred on the following side of the AR and then propagated along the

flux tube. This propagation would naturally produce an opposing spin in the other polarity

(Longcope & Welsch 2000), which does eventually occur. It is possible that a portion of

the tube which is twisted and writhed is emerging, but that the twist propagates into the

atmosphere through the torque-imbalance mechanism of Longcope & Welsch (2000). If this

is so, then the virtual cancellation of spin and braiding helicity is consistent with a kink

caused by the flux tube kink instability.

6. Discussion

The foregoing has described a practical method of decomposing helicity flux into spin

and braiding contributions due to motions internal and external, respectively, to specified

photospheric regions. If a source region is the end of an isolated sub-photospheric flux

tube, then braiding helicity comes principally at the expense of its writhe, while spin comes

principally at the expense of its twist. The decomposition provides a definition of an averaged

rate of spin within a complex region undergoing complex internal motion.

We have developed a novel partitioning algorithm which permits us to apply our method

to long time sequences of AR observations. The algorithm defines regions using a gradient-

based tessellation matched to an evolving reference partition. Local Correlation Tracking

(LCT) is used to derive a velocity with which the reference partition is evolved. Using time

sequences of low-resolution and high-resolution MDI data we verify that the partitions follow

the photospheric flow. The agreement also serves to test the braiding helicity component of

the decomposition.

Magnetogram partitioning is not a unique process and the output of the algorithm

depends on choice of its parameters. We show theoretically that braiding helicity in one

partitioning will be designated as spin helicity in a coarser partitioning. This ambiguity

is natural in light of the imprecise segregation of sub-photospheric field into flux tubes.

In reality it is probably not possible to assign each bit of photospheric flux to a distinct

flux tube, so it should not be possible to clearly segregate helicity according to twist and

writhe of hypothetical tubes. In spite of this, the flux tube concept has proven useful in

explaining the existence and behavior of active regions, at least on gross scales. We expect



– 35 –

our decomposition to be valid at roughly the same level since a few large partitions typically

account for the majority of all magnetic flux and helicity flux.

To test our measurement of spin rate we perform decompositions on ARs containing

rotating sunspots previously studied using TRACE white-light observations by Brown et al.

(2003, BN+). This represents a novel cross-calibration of LCT-derived helicity fluxes. We

find that spin helicity rates computed from high-resolution MDI data agree well with sunspot

rotation rates, both as functions of time and of radius. The spin rate derived from the

partition is found directly from a helicity flux. Its agreement with penumbral rotation rates

confirms that a rotating sunspot injects magnetic helicity into the corona at a rate ∼ θ̇Φ2/2π.

Spin rates derived from low-resolution MDI magnetograms agree with sunspot rotation

curves but appear to systematically underestimate their magnitude. This underestimation

is probably due to LCT velocities being systematically lower when low-resolution magne-

tograms are used. We also found, in §3, that the lower LCT velocities produced lower

centroid velocities. This leads us to expect both spin and braiding helicity fluxes to be

underestimated by low-resolution magnetogram sequences. Since many of the helicity cal-

culations reported in the literature have used low-resolution MDI data (necessary for long

time sequences) these have probably been subject to similar underestimation.

We applied our algorithm to sequences of magnetograms for six different active regions.

In order to include several cases extending over many days it was necessary to use low

resolution data, and accept its tendency to underestimate helicity fluxes. Among our cases

we observed some where spin was the dominant source and others where braiding was. In

some cases the two contributions were of the same sign while in others they opposed one

another. One case in particular had opposing signs of spin and braiding whose differing time

history appeared consistent with a current-driven kink instability within the submerged flux

tube. In spite of the significant spinning and braiding there was little net helicity injection

in this case. This would be expected if the kink instability were converting twist helicity to

writhe helicity without altering their sum.

The six cases we treated were intended to illustrate the decomposition technique, rather

than provide a statistical picture of helicity flux. Nevertheless, it showed that coronal helicity

probably does not originate from either the twist or writhe of sub-photospheric flux tubes

alone. Instead it appears that either or both kinds of helicity can contribute in different cases.

It is still possible that a general pattern exists, perhaps involving the age or life-history of

the AR. A more extensive study could eventually reveal such a pattern.

The decomposition presented here may also prove useful in modeling the storage of

coronal energy in AR fields. Indeed, the analysis of AR 10696, presented in §5, has already
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been used in this way. This region was the site of a large flare (GOES class X2) and CME

late on Nov 7. The helicity decomposition reveals that motions prior to that event injected

helicity primarily through braiding. This fact was used by Longcope et al. (2007) to model

the energy storage. They were able to produce a model in which the relative motions of the

AR’s flux concentrations (essentially a shearing) stored the energy prior to flaring. Had the

helicity decomposition shown significant spinning it would have been necessary to model the

internal motions of the concentrations as well.

We thank Daniel Brown for providing us the data from BN+. This work was funded in

part by the DoD under the MURI program and by the Air Force Office of Scientific Research

under contract FA9550-06-C-0019.
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