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ABSTRACT

We introduce a technique for inferring a photospheric velocity from a se-

quence of vector magnetograms. The technique, called The Minimum Energy

Fit, demands that the photospheric flow agree with the observed photospheric

field evolution according to the magnetic induction equation. It selects, from all

consistent flows, that with the smallest overall flow speed by demanding that

it minimize an energy functional. Partial or imperfect velocity information, ob-

tained independently, may be incorporated by demanding a velocity consistent

with the induction equation which minimizes the squared difference with flow

components otherwise known. The combination of low velocity and consistency

with the induction equation are desirable when using the magnetogram data and

associated flow as boundary conditions of a numerical simulation. The technique

is tested on synthetic magnetograms generated by specified flow fields and shown

to yield reasonable agreement. It also yields believable flows from magnetogram-

s of NOAA AR8210 made with the Imaging Vector Magnetogram at the Mees

Solar Observatory.

Subject headings: Sun: photosphere — Sun: atmopheric motions

1. Introduction

Our understanding of the solar atmosphere has been greatly improved in recent decades

through a combination of improved observational and computational techniques. Spectral

polarimetry of optical absorption lines permit all three components of the magnetic field

vector to be measured over the entire surface at which the spectral line is formed, typically

the photosphere (see e.g. Stenflo 1994, for details on polarimetry). Successive advances

have made it possible to obtain such data at ever increasing spatial resolution and time

cadence. Vector magnetograms so produced offer the most significant observational data on

the dynamics of the Sun’s photospheric magnetic field and provide critical boundary data

for any model of the coronal magnetic field.
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The most realistic coronal field models are numerical solutions of the equations gov-

erning coronal dynamics. A typical such simulation solves the time-dependent equations of

magnetohydrodynamics (MHD) within an active region corona subject to boundary condi-

tions on the magnetic field and plasma velocity at the photospheric surface. Increasingly

powerful computers and numerical techniques have made possible ever more faithful coronal

models by allowing magnetograms to be used in the construction of their boundary con-

ditions (Gudiksen & Nordlund 2002). A particularly ambitious and faithful coronal model

would use time-dependent boundary conditions derived from a sequence of vector magne-

tograms along with a time-varying velocity field. One obstacle to producing such a model is

that it is not yet possible to derive a photospheric flow field consistent with a given sequence

of magnetograms.

Local Correlation Tracking (LCT, November & Simon 1988) is the most successful and

most widely used method of inferring a horizontal velocity field uh(x) from a sequence of

images. The method was originally developed using sequences of intensity images I(x, y, tn)

to derive a velocity between each successive pair. For each pair of images, an apodizing

window centered at position x0, and nonzero within a small neighborhood, is used in a

cross-correlation. The cross-correlation is expressed as a function of ∆x, the displacement

applied to the first image. That displacement ∆xm which maximizes the cross-correlation

yields a horizontal velocity for the central point of the apodizing window uh(x0) = ∆xm/∆t.

The LCT will accurately recover the photospheric velocity provided, first of all, that

the changes in the intensity are primarily caused by the velocity through advection

∂I

∂t
+ uh · ∇I = 0 . (1)

Optical photospheric intensity is related to the local temperature T (x, y) which does in fact

obey an advection equation similar to (1). Another requirement of the LCT is that the

velocity field be smooth on spatial and temporal scales sufficiently large to be approximated

as constant over the interval ∆t and within the apodizing window. If the velocity is also

small enough then (1) can be approximately solved

I(x, t+ ∆t) ' I[x−∆tuh(x), t] . (2)

Finally, the intensity image must contain structure on scales small enough that its auto-

correlation has a distinguishable peak within the apodizing window. If this is the case than

a cross-correlation between (2) and I(x, t) will peak at ∆xm ' ∆tuh(x), which is the LCT

velocity measurement.

More recently the LCT has been applied to line-of-sight magnetograms to recover the

velocity field driving the evolution of active region magnetic fields (Chae 2001; Moon et al.



– 3 –

2002). This application is, however, problematic since magnetograms do not satisfy all of

the conditions required for the LCT (Démoulin & Berger 2003). We grant for the moment

that the magnetogram measures the vertical field component, Bz(x, y), although this is only

strictly true of a line-of-sight magnetogram if it is restricted to disk center. The vertical field

evolves according to the magnetic induction equation

∂Bz

∂t
+ vh · ∇Bz = − Bz∇ · vh + ∇ · (vzBh) , (3)

rather than the horizontal, scalar advection equation, (1), assumed by the LCT. The terms on

the right hand side (rhs) of expression (3) represent mechanisms other than simple advection

by which vertical magnetic field may evolve. It is not clear that the first term, whereby

horizontal convergence increases the field strength, will have a significant effect since the

LCT uses the location of the cross-correlation peak but not its amplitude.

The principal source of difficulty in applying the LCT to magnetograms stems from the

second term on the rhs of (3). According to this term, vertical flow may interact with the

unmeasured, horizontal field to change Bz. It has been shown (Démoulin & Berger 2003)

that standard LCT will attribute this change to a fictitious horizontal velocity; a pattern

velocity not corresponding to fluid flow. Corrections have been proposed for the effects of

vertical flow, provided vector magnetogram are available to specify all three components of

B (Kusano et al. 2002; Welsch et al. 2004). Since the velocity component parallel to B does

not affect its evolution, the proposed corrections assume it to be absent: v‖ = 0. This leaves

only the two velocity components v⊥ perpendicular to the local field. Assuming the observed

pattern velocity returned by LCT, uh, to be a projection of this, it is a simple matter to

recover the actual fluid velocity, v⊥ including both its horizontal and vertical components.

The inference of photospheric velocity by applying the LCT to magnetograms, even

after projection back to v⊥ , has several potential drawbacks. The velocity found this way

will not be consistent with the induction equation, since the induction equation was not

used in its derivation. Moreover, it is not obvious how one may use a single equation, either

(1) or (3), to specify both components of v⊥ independently. The LCT appears to overcome

this deficit by demanding a separation in structure scales between uh(x, y) and I(x, y). The

assumed separation, however, means the velocity field will not satisfy the induction equation

over all scales. Since a numerical simulation will solve a form of the induction equation, the

evolution of the interior will be inconsistent with any boundary evolution which combines

magnetograms and LCT-derived velocity. This is likely to be an undesirable situation.

The present work introduces a method of using the induction equation to directly infer

a photospheric velocity field consistent with a sequence of vector magnetogram. As the

equation count above showed, this cannot be a unique result, and we explicitly show the



– 4 –

multiplicity of consistent velocities. We introduce a regularization which produces the unique

velocity field with the smallest overall speeds which also satisfies the induction equation. The

result is a velocity field we call the minimum energy fit (MEF), which is ideally suited to

use as a boundary condition in numerical simulation. We derive the MEF algorithm in the

next section and then test it against known solutions in the following section. Section 4

presents the results of applying the MEF to actual vector magnetograms of NOAA AR8210.

We return, in the final section, to a discussion of the suitability of the inferred velocity as a

boundary condition of numerical simulations.

2. Formulation of the method

Take the plane z = 0 to be the photospheric surface within which all three components

of the magnetic field are measured. The magnetic field is assumed to evolve according to

the ideal induction equation
∂B

∂t
= ∇× (v×B) . (4)

The vertical component of this equation depends only on v and B in the photospheric

plane, while the remaining components of the equation depend on vertical derivatives of

these quantities as well. Therefore if a field v(x, y, 0, t) is found which is consistent with the

vertical component of the equation

∇h · (vzBh − Bzvh) =
∂Bz

∂t
, (5)

then the same velocity will also satisfy the remaining components of (4) given the proper

choices of ∂vz/∂z, ∂vh/∂z and ∂Bh/∂z. Had the resistive induction equation been used

instead of (4) the vertical diffusive term, η∂2Bz/∂z
2, would make it impossible to determine

v from B measured within a single plane.

The magnetogram from time tj will include several distinct regions M
(ν)
j in which B(xh)

is measured with sufficient accuracy to infer v. In the simplest cases, measurements outside

of these regions are consistent, to within measurement error, with B = 0, and thus place

no constraints on the velocity there. More generally the exterior will contain a mixture of

zero and non-zero pixels whose structure is too complex for spatial derivatives to be reliably

computed, making the interpretation of the induction equation impossible. Only inside the

region can we hope to compute a photospheric velocity from the magnetogram. Nor can the

velocity within one region be meaningfully related to that in any other based on the induction

equation alone. Thus we find the velocity field within each region M (ν) independently, and

will henceforth consider a single region omitting the superscript.
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Since the data consists of successive magnetograms from times tj and tj+1 we must

use finite differences to approximate the time derivative ∂Bz/∂t ' (Bz,j+1 − Bz,j)/∆t. The

optimal interval between magnetograms will be short enough that this finite difference is a

good approximation, but long enough that ∆Bz can be accurately measured. Our objective

is to find a steady velocity field v by which Bj will evolve to Bj+1 over that time. Within

the region M ≡ Mj ∪Mj+1 the field B̄ ≡ (Bj + Bj+1)/2 is accurately measured, and v can

be found, in principle.

To solve eq. (5) for vh and vz we introduce unknown scalar potentials φ(xh) and ψ(xh)

vzBh − Bzvh = ∇hφ + ∇hψ × ẑ , (6)

where Bh = (Bx, By) are the horizontal components of the measured magnetic field.1 Sub-

stituting this decomposition into eq. (5) yields a Poisson equation for φ(xh)

∇2
hφ =

∂Bz

∂t
. (7)

This can be readily solved for φ inside M , given a suitable boundary condition on ∂M .

Adopting the homogeneous boundary condition φ = 0 at ∂M , does not compromise the

generality of the solution, since transverse velocity components may be added through ψ.

The scalar potentials φ and ψ may be interpreted as generators of the inductive and

electrostatic parts, respectively, of the horizontal electric field at the photosphere. Expressing

the horizontal components of E = −v ×B using (6),

Eh = − ẑ× (vzBh −Bzvh) = ∇φ× ẑ − ∇hψ , (8)

ψ(x, y) appears as an electrostatic potential and φ(x, y) as a “stream function” generating the

inductive, or divergence-free, electric field. According to this decomposition the electrostatic

field plays no part in the evolution of Bz, and thus cannot be found from the induction

equation. The inductive potential φ, on the other hand, is determined by the induction

equation according to the Poisson equation (7).

1These are not the same as the components transverse to the line-of-sight, since the line-of-sight is rarely
vertical. We assume throughout that the magnetogram data has been resolved into components which are
locally vertical and horizontal.
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2.1. The Minimization

Once the inductive potential φ(xh) has been found from eq. (7), the transverse velocity

is given by

vh =
1

Bz
(vzBh −∇hφ−∇hψ × ẑ) . (9)

This velocity satisfies the induction equation, (5), for all choices of ψ(xh) and vz(xh). We are

therefore free to impose additional constraints on the solution in order to uniquely specify

these fields. These constraints might incorporate partial or imperfect information about the

flow field, obtained by some other means. We express this independent velocity information

as the reference flow u(xh), and set u = 0 when no independent information is available. In

the end, however, we must consider the uses to which we will put the solution v, and choose

constraints which best suit that end.

The chief motivation of the inversion proposed here will be to find a velocity v to

use as one boundary condition of a numerical simulation. From general properties of such

simulations we expect large boundary velocities will be undesirable, and therefore seek the

smallest possible velocity field consistent with equation (5). We define the smallest velocity

as that which minimizes the functional

W{ψ, vz} ≡ 1
2

∫
M

[
|vh − uh|2 + |vz − uz|2

]
dx dy . (10)

Since this functional resembles the kinetic energy (albeit within the photospheric plane), we

call the resulting solution the minimum energy fit.

Demanding stationarity of W under variations of the field vz(xh), without variations in

ψ(xh), yields the Euler-Lagrange equation

vz =
B2
z uz + Bh · (∇hφ+∇hψ × ẑ +Bzuh)

|B|2 . (11)

Alternatively, demanding stationarity under variations of ψ(xh), while holding fixed vz(xh),

yields a second Euler-Lagrange equation

∇h ·
(
∇hψ

B2
z

)
= ∇h ·

[
ẑ× (vzBh −∇hφ−Bzuh)

B2
z

]
, (12)

after integration by parts, and neglecting boundary terms. A pair of fields ψ(xh) and vz(xh)

which satisfy both (11) and (12) will make W stationary under simultaneous variations.

Thus these equations are necessary but not sufficient conditions for minimizing the energy-

like functional W{ψ, vz}.
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Substituting eq. (11) into eq. (12) gives a single partial differential equation for ψ(x, y).

With reference flow components uh and uz set to zero for simplicity, the resulting equation

is

∇h ·
(

Π · ∇hψ

B2
z

)
= −∇h ·

[
Π · (ẑ×∇hφ)

B2
z

]
(13)

where the matrix

Π ≡ I − (ẑ×Bh)(ẑ×Bh)

|Bh|2 +B2
z

(14)

is positive, semi-definite and acts as a projection onto the Bh direction wherever Bz = 0.

Therefore, within regions |Bz(xh)| > 0, the electrostatic potential ψ(x, y) solves a linear ellip-

tic equation whose source term involves the inductive potential φ(x, y) and known magnetic

field components.

Combining eqs. (9) and (11) it can be shown that B · (v − u) = 0 at all points on the

surface. This is natural, since the MEF velocity minimizes the integral of

|v − u|2 = |v⊥ − u⊥|2 + |v‖ − u‖ |2 , (15)

subject to the induction equation, where v⊥ and v‖ correspond to the components of v

perpendicular and parallel to the local magnetic field vector B. The induction equation

involves only v⊥, through the product, v × B, and thus places no constraint at all on v‖ .

With no constraints, it is evident that setting v‖ = u‖ will make the second term on the

rhs of (15) its absolute minimum: zero. Any independent information about v‖ , expressed

through the reference flow u‖ , is all the information there is, so the MEF velocity will have

v‖ = u‖ .

A special case of the above result is that when no independent information about the

flow is available, u = 0, and the MEF velocity will be purely perpendicular to the magnetic

field: v ·B = 0. We thereby see that the MEF is a generalization of the correction strategy

used in application of LCT to magnetogram data (Kusano et al. 2002; Welsch et al. 2004).

We use the term “generalization” since the MEF also adjusts one component of v⊥ by its

minimization, while LCT appears to find this by demanding smoothness in the solution.

2.2. Solution Algorithm

We have produced a numerical implementation of the MEF in order to test the general

technique. We use simple and straightforward iterative procedures to solve equations (7),

(11) and (12). These procedures, described below in the interest of completeness, were

adopted for their simplicity and are not intended to be the optimal solution scheme.
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Fields B̄z and ∂Bz/∂t are computed on each pixel of M from a pair of co-aligned vector

magnetograms. Equation (7) is then solved for φ(x, y) at each pixel center using the boundary

condition φ = 0 on ∂M . By defining φ on pixel centers and ψ on pixel corners (vertices) the

finite difference form of (5) will be satisfied exactly regardless of ψ or vz. Further details on

the differencing scheme are provided as an Appendix. Our implementation uses a centered-

difference Laplacian and solves eq. (7) by standard Jacobi relaxation.

We next solve for ψ(x, y) and vz iteratively. In our first step we take vz(x, y) = uz(x, y)

and solve the elliptic equation eq. (12) for ψ(x, y), using boundary conditions discussed

below. Next we use the solution ψ(x, y) in eq. (11) to compute vz(x, y). This field is used to

re-compute ψ(x, y), which is then used to re-compute vz and so forth. In our experience this

iterative procedure will eventually converge to solutions vz and ψ which satisfy both eqs.

(11) and (12) simultaneously. These are the Minimum Energy Fit to the observed magnetic

evolution.

Elliptic equation (12) is solved within the domain M by Jacobi relaxation. The domain

M is defined so that both B and ∂Bz/∂t vanish outside of it. It is therefore consistent to

require that no flow cross the boundary: vh · n̂ = 0 on ∂M . We adopt this inhomogeneous

Neumann condition on ψ(x, y). Jacobi relaxation works fairly well in this case since there is

almost always a very good initial guess for the solution from the previous iteration (before

vz was changed).

Equation (11) is algebraic for a continuous field vz(xh). We show in the Appendix that

the variation of the discretized energy function yields a coupled, linear system of equations

for the gridded values. Fortunately, the coupling matrix is diagonally dominant and the

system may be solved by straight-forward relaxation techniques. We must therefore iterate

to obtain a solution to (11), while holding fixed ψ.

It is troubling, at first sight, that our iterative procedure appears to introduce an artifi-

cial singularity. Equation (12) is singular where Bz = 0, even though the combined equation,

(13) is singular only where |B| = 0. It is extremely unlikely that B̄z = 0 exactly in any pixel,

and we have rarely encountered anomalously large velocities for this reason. We do find,

however, that system converges to a solution with layers of up-flows or down-flows localized

to either side of the polarity inversion line (PIL, where Bz = 0) with little flow on the PIL.

This feature may arise because the restriction of the elliptic operator, in eq. (13), inhibits

coupling of the solution across the PIL. Another contributing factor may be the tendency,

discussed in the Appendix, of the discretized version of eq. (11) to over-emphasize the s-

mallest scales. We attempt to address this artifact by coupling the solution across the PIL

using spatial smoothing. The converged velocity vz is smoothed with a box-car filter, three

to five pixels wide, and then used as the initial condition for a new set of relaxations. This
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relaxation converges to a new solution which usually has a lower energy than the first and

is more continuous across the PIL. This can be repeated, but there is generally less change

with each repetition.

3. Tests of the MEF Algorithm

To demonstrate the effectiveness of the iterative inversion algorithm, and of the MEF

principle, we apply it to two test cases. Each test case consists of a pair of synthetic mag-

netograms generated from the evolution of a magnetic field under the influence of a known

generating flow. Applying the MEF to the pair of magnetograms results in an inferred flow.

The inferred flow is not intended to match the generating flow since the defining criterion of

the MEF, a minimum energy, will not be a property of the generating flow. A comparison

of the two flows will, nevertheless, show the extent to which the MEF produces a flow with

desirable properties and with a resemblance to reasonable photospheric flows. The test cases

will also provide a means of exploring the effects of noise and the inclusion of independent

flow information.

3.1. The Uniform Translation Test

For the first test we produce synthetic magnetograms from the rigid translation of

classic spheromak magnetic field. The spheromak field is chosen because it is well-known

(Bellan 2000), has few parameters and resembles, in certain respects, a bipolar active region

with twisted flux. We use a spheromak confined within radius a, centered at x(c), with

positive helicity and a symmetry axis parallel to x̂. Vector magnetograms are synthesized

by evaluating B within the plane z = 0 (see fig. 1a). The sphere center is translated from

x
(c)
0 to x

(c)
1 while keeping the symmetry axis parallel to x̂. This motion is consistent with a

uniform generating flow v = x
(c)
1 − x

(c)
0 , when time is expressed in units of ∆t = t1 − t0. For

the purpose of comparison, the generating flow is taken to be the perpendicular part this

uniform translation, v⊥.

The magnetic field is zero outside the sphere, so within each magnetogram |B| > 0

within a circle. Figure 1a shows the synthetic magnetogram of B̄ for a case with a = 20

pixels, initially centered at z
(c)
0 = −3 pixels (below the photosphere). This is displaced 4

pixels upward and 4 pixels Northwest (an angle of 35◦ from the x axis). The boundary of

M is shown as a solid line, the transverse magnetic field by arrows, and the vertical field by

grey-scale. Within this boundary the rigid displacement has an energy of W0 = 4.11× 104,



– 10 –

Fig. 1.— The input for the spheromak test case. (a) The synthetic vector magnetogram.

Grey-scale shows the vertical field, Bz(x, y), the broken curve is the PIL and arrows show

Bh(x, y). (b) The dBz/dt as a grey scale, and the inductive potential φ(x, y) shown in

contours.

which is |v|2 = 32 over 1285 pixels.

Discarding parallel velocity components from the uniform flow, which could never be

found, yields the photospheric flow shown in fig. 2a. This is the generating flow to which

we compare the inferred flow. The generating flow has an energy W⊥ = 2.7 × 104, which

is naturally smaller than W0, of the uniform translation. The flow is most upward near the

PIL, where the magnetic field is most horizontal, and has a net upward flux of 3.1 × 103,

smaller than that of the rigid motion: 4× 1285 = 5.1× 103.

Invoking no independent flow information, u = 0, and solving within the region M ,

beginning from ψ = 0, vz = 0 we perform the alternating relaxation procedure described

above. After ∼ 800 iterations, relaxing either ψ or vz, the system has nearly converged. The

converged state is marked by undesirable up-flows localized to the either side of the PIL

with almost no vertical flow on the PIL itself. This solution is smoothed and used to initiate

another 300 iterations of relaxation. This converges to a solution with smooth up-flows and

a lower energy. The smoothing and relaxation is then repeated, but with little noticeable

change in the converged solution.

Figure 3 shows the evolution of the energy functional W during the relaxation. It is

evident that both the ψ and vz relaxations decrease the energy monotonically. Smoothing
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Fig. 2.— Flows corresponding to the emerging spheromak shown in fig. 1. Grey-scales show

the vertical flow vz, arrows show vh. The same scales for each are used in both panels. (a)

The generating flow v⊥ , the perpendicular components of a rigid translation, 4 pixels upward

and 4 pixels along an axis 35◦ North of West (right). (b) The inferred flow from the MEF.
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increases the the energy, but seems to permit subsequent relaxation to a solution with even

lower energy. Each of the converged solutions has energy lower than W⊥, the energy of the

generating flow; the final energy of W = 1.86× 104, is the lowest achieved.

Fig. 3.— The energy functional W versus iteration in the alternating relaxation procedure.

The relaxation decreases the solution below both reference energies W0 (dashed) and W⊥
(solid).

The inferred flow shown in figure 2b compares favorably with the generating flow v⊥ .

As described in an Appendix, the algorithm is constructed so that, to the level of round-

off errors, the induction equation is satisfied regardless of variables vz or ψ. Thus the

inferred flow is a solution of the induction equation as legitimate as the generating flow. It

is worthy of note that both flows agree in their general structure, with extended up-flows

across the middle, and down-flow regions to the Northwest and to the South. The inferred

horizontal flow is smooth and directed in similar direction and of comparable magnitude

to the generating flow. The inferred velocity is more vertical at the PIL, but contains a

significantly smaller net up-flow, 1.1× 103, than the generating flow.

The two flow fields may also be compared by plotting, for each one, the vector field

f = vzBh−Bzvh, which is related to the horizontal electric field Eh = ẑ× f . The vector field

f , computed according to expression (6), depends on the gradients of scalar potentials φ and

ψ and not on the vertical velocity vz. Since only the inductive potential φ is constrained by

the induction equation, we can expect the two flows to differ in their respective electrostatic

components, ∇hψ× ẑ. The comparison in fig. 4 shows that the vector fields are very similar,

but not identical.

The magnetic energy transported by the inferred flow is comparable to that of the
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Fig. 4.— Plots of the vector field f = vzBh − Bzvh for both the generating flow (a) and

inferred flow (b).

generating flow. The integrated Poynting flux for any flow perpendicular to B gives a net

power

P =
1

4π

∫
B× (v ×B) · ẑ dx dy =

1

4π

∫
|B|2v⊥ · ẑ dx dy , (16)

upwards across the z = 0 plane. The Poynting flux from the inferred flow, PMEF = 6.2×103,

only two thirds that of the generating flow, P0 = 9.4 × 103. At least in this case, the

conservative assumption made my the MEF leads to a conservative estimate of the energy

transport.

As a variant on this test we introduce the independent information about a uniform

up-flow by setting the reference flow to u = 4ẑ. This modified inferred flow, shown in fig.

5a, has up-flow over the entire region, although it is not itself uniform. The net up-flow is

13% smaller than that of uniform up-flow. Apparently the horizontal flow associated with

uniform up-flow (namely a uniform horizontal flow at |vh| = 4) has kinetic energy sufficiently

large that the MEF opted to reduce it at the expense of a vertical mismatch. The energy

of the inferred flow, W = 1.57 × 104, is indeed lower than that of a purely horizontal flow,

W0 = 1285× 16 = 2.06× 104

To test its robustness we apply the MEF to magnetograms degraded with noise. To each

component of the synthetic magnetograms used above we add uncorrelated, Gaussian random

noise whose variance is 0.01〈B2
z 〉 (i.e. a 10% noise level). The degraded magnetograms are
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Fig. 5.— Variants on the test case. (a) MEF solution with the up-flow information included

as u = 4ẑ. (b) The velocity inferred after noise has been added to each magnetogram.

combined to yield B̄ and ∆Bz . The MEF is applied to these within the same domain M

used in the previous test. The result, shown in fig. 5b, is a reasonably good reproduction of

the noise-free results. The energy function dropped to W = 1.77× 104, even lower than the

noise-free case.

3.2. Test on Numerical Simulation Results

To test the MEF on a more complex generating flow we produce synthetic magnetogram-

s from the results of a non-linear, time-dependent, three-dimensional, MHD simulation of

flux emergence published by Magara and Longcope (2003). Figure 6a shows the averaged

magnetogram generated from two time steps during a period slightly after the main emer-

gence. Two distinct polarity regions are clearly visible connected by a sheared horizontal

field. Figure 6b shows the simulation’s velocity field at the same level from a time mid-way

between the magnetograms.

The solid curve in fig. 6 shows the region M which includes both poles of the emerged

flux tube separated by a PIL. The perpendicular component of this flow, shown in fig. 7a,

has an energy W⊥ = 2.5 × 103. The MEF algorithm yields a solution with slightly lower

energy (W = 1.7 × 103) shown in fig. 7b. This can be seen to share most of the features
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Fig. 6.— Synthetic data taken from the flux-emergence simulation of Magara and Longcope

(2003). (a) The magnetogram averaged between times t−18 and t = 20. (b) The simulation

flow velocity from t = 19.
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with v⊥ from the simulation velocity. In particular, both have regions of up-flow around the

periphery. The vertical flow in the MEF shows signs of a checkerboard pattern in regions

of small Bz. This is a result of the small-scale enhancement discussed in the Appendix.

Curiously, the simulation is still experiencing a positive Poynting flux, P = 58 at this stage,

while the inferred flow transports energy downward: P = −9.4.

Fig. 7.— Photospheric flow velocities plotted with the same contour levels and arrow scalings.

(a) v⊥ from the velocity in the self-consistent MHD simulation. (b) The velocity inferred

applying MEF to the photospheric field evolution.

4. Application to Data

We demonstrate its capability on actual data by applying the MEF to a sequence of

vector magnetograms made by the Imaging Vector Magnetograph (IVM, Mickey et al. 1996;

Labonte et al. 1999) at University of Hawaii/Mees Solar Observatory. The data were acquired

on May 1, 1998 of NOAA AR8210 (S16◦ E02◦) at a time cadence of approximately three

minutes. The resolution of the 180◦ ambiguity in the magnetic field component transverse to

the line-of-sight, and the transformation to the heliographic coordinate system was performed

using an automated iterative procedure (Canfield et al. 1993) which first minimizes the

difference between the observed field and a force-free field computed using the Bz component

and a force-free twist parameter “α”, itself chosen as that for which the resulting ambiguity
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resolution is least variable over the time series Leka & Barnes (2003); minimization of the

divergence of B and of the vertical currents Jz follow for each magnetogram. Successive

magnetograms are co-aligned with one-another using the cross-correlation of intensity maps,

a technique which will minimize the motion of the “center of gravity” of the image, in this

case the main sunspot. Random noise is then reduced by averaging the magnetic fields

from five consecutive, co-aligned magnetograms. The time at the middle of this 15-minute

sequence is used as the nominal time of the averaged magnetogram. We perform MEF

analysis on pairs of averaged magnetograms separated by approximately 30 minutes. We

consider two independent pairs, 18:38/19:09 and 19:48/20:19, from a period of relative quiet,

between GOES flares observed at 17:54 and 22:54 (Sterling & Moore 2001), during which

we expect relatively steady flow.

The first step of the MEF is to create a mean, B̄, and difference, ∆Bz, from the magne-

togram pair. This averaging is intended to produce a field at the same time as the centered

time difference, and should not be confused with the noise-reducing averaging performed

in preparation for the MEF. Figure 8 shows the mean field and time derivative found us-

ing magnetograms from the first pair, 18:38/19:09. The sub-region M , selected using the

threshold |Bz| = 60G, is shown as a solid perimeter in both panels.

Active region 8210 is dominated by a negative sunspot, observed to undergo clockwise

rotation (Warmuth et al. 2000), to the East of which is an emerging flux region (EFR,

Sterling et al. 2001). Our region M encloses the negative polarity of the sunspot, both

polarities of the EFR, and several smaller positive flux concentration to its South. Within

this region the positive flux, Φ+ = 2.3 × 1021 Mx, balances only a small fraction of the

negative flux, Φ− = 1.2 × 1022 Mx; the remainder of 8210’s positive polarity extends to

the North and West and is therefore not included in M . The flux changes, shown as the

grey-scale in 8b, increases the flux in each polarity at a rate of Φ̇ = 1.2 × 1016 Mx/sec,

primarily due to the emergence of the new flux. The transverse field is almost due North

at the PIL, making the field “inverse” at the photospheric surface: it crosses the PIL from

negative to positive. Movies of the vertical field reveal a generally Southward motion of the

positive concentrations, but relatively little of the clockwise penumbral rotation seen in e.g.

H-α (Warmuth et al. 2000).

The general features of both inferred flow fields, shown in fig. 9, are similar to one

another and to expected evolution. The positive region is dominated by flow at ∼ 300 m/sec

following a Southward arc. There is very little motion in the negative region, even though

fig. 8b shows the largest inductive electric fields, |∇φ|, to be in this region; there is no hint

of the clockwise sunspot rotation. At both times there is a down-flow, exceeding 400 m/sec,

along the Northern portion of the PIL, accompanied by horizontal outflows (away from the
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Fig. 8.— Magnetic field data from active region NOAA AR8210. (a) The mean magnetic field

from magnetograms at 18:38 and 19:09. The region M is defined by the threshold |Bz| ≥ 60

G. The grey-scale shows Bz on a scale truncated so that black to white, spans Bz = −500 G

to Bz = 500 G. Arrows show the horizontal field Bh. (b) The change ∆Bz between the two

magnetograms. The full grey-scale spans dBz/dt = ±0.05 G/sec, corresponding to a total

difference ∆Bz = ±92 G. The contours show the inductive potential φ(x, y), with dashes

pointing “downhill”.
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PIL). This combination of down-flow and out-flow is natural when the opposing fluxes are

augmented by PIL subduction of inverse field, which must be locally U-shaped. There is

also a significant upflow throughout the center of the positive polarity; this presumably

corresponds to the emerging flux.

There is no way to know the actual generating flow for this observed magnetic evolution.

The analysis does, however, demonstrate that applying the MEF to actual data results in

inferred flows with reasonable and repeatable properties. It is notable that magnetograms

separated by just 30 minutes permit the inference of flows ∼ 200 m/sec over large regions

(the Southward flow, for example). Advection at that speed will carry a photospheric fluid

element only half way across a 1.1” pixel. These flows do, however, appear to be reliable since

repeating the analysis with the outermost magnetograms (18:38/20:19) produces a flow-field

resembling both 9a and 9b in form and magnitude. Active region 8210 is particularly well-

studied because its complex evolution seemed to be responsible for a high level of activity

including X-class flaring and coronal mass ejections (Warmuth et al. 2000; Sterling & Moore

2001). The MEF is nevertheless capable of inferring flows in even this abnormally complex

region.

5. Discussion

The Minimum Energy Fit, presented here, infers a photospheric velocity field consistent

with observed photospheric magnetic field evolution. The method determines a set of veloc-

ities, characterized by the single inductive potential φ, each member of which generates the

observed evolution through the vertical component of the ideal induction equation. A single

member of this set is selected by minimizing the energy functional W{ψ, vz}. This mini-

mization will not yield the actual photospheric velocity since the magnetic field evolution

alone does not provide enough information to do so. Instead, the MEF returns one possible

flow field, chosen to be the one with the least overall velocity (i.e. lowest kinetic energy)

which is consistent with the observed magnetic evolution.

The minimization of W results in Euler-Lagrange equations for two other scalar fields,

ψ(x, y) and vz. We have implemented the MEF by solving these equations using an al-

ternating series of relaxations. We use this implimentation to demonstrate its capabilities

by applying the MEF to magnetogram pairs synthesized from known field evolution and to

pairs of actual magnetograms. When applied to synthetic magnetograms the inferred flow

has good overall resemblance to, and still lower energy than, the generating flow. In the

cases studied the inferred flow had smaller vertical Poynting flux and net mass flux than the

generating flow. The algorithm, at least as presently implemented, converges most poorly
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Fig. 9.— The result of MEF inversion. The reference arrows are each approximately 400

m/sec.
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in the vicinity of the polarity inversion line. We find that repeated relaxation, interspersed

with spatial smoothing aids the ultimate convergence.

The MEF approach has several advantages over Local Correlation Tracking and related

velocity inference techniques. The MEF derives velocity directly from the ideal induction

equation on a grid matching that of the magnetic field measurements. The result is a

combined velocity/magnetogram sequence which is self-consistent and well-suited for use as

a boundary conditions of a three-dimensional simulation. It adopts the conservative approach

of finding the smallest velocities required for consistency with data.

Another advantage of the MEF is its capability of incorporating partial or imperfect

velocity information obtained through independent means. Doppler shift measurements

offer one potential source of this independent velocity information along the line of sight.

Doppler shifts might be measured separately or from the same Stokes profile inversion used

to derive the magnetic fields (see for example Skumanich & Lites 1987). The latter approach

promises more consistency with the induction equation which involves the velocity acting

on the measured magnetic field. An alternative use for the reference flow u is to use each

velocity in a sequence to constrain the velocity of the subsequent step. This would amount

to a solution which minimized, in some sense, changes in the velocity field. Finally, a

separate application of the LCT, possibly to intensity images, might be used to constrain

the horizontal flow fields in the MEF. This hybrid method would effectively combine the best

aspects of both techniques. The MEF automatically projects away any parallel component,

but also demands consistency with the induction equation.
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A. Finite Difference Formulation

The MEF algorithm is formulated on a grid defined by the pixels of the vector magne-

togram. We assume this grid to be square and use the cell size as our unit of length. All

components of the magnetic field B = (Bx, By, Bz) are assigned to the centers of the grid-



– 22 –

cells. Cell centers are indexed by integer pairs (i, j), and cell edges by half integers; (i+ 1
2
, j)

is the vertical edge between cells (i, j) and (i+ 1, j). Velocity components, v = (u, v, w) and

scalar potentials φ and ψ are placed variously on cell centers, edges and vertices as illustrated

in fig. 10. The derivatives of the scalar potentials define the vector

f = (f, g) ≡ ∇φ+∇ψ × ẑ , (A1)

whose components are placed on cell edges and defined by the centered differences of the

potentials

fi+ 1
2
,j = φi+1,j − φi,j + ψi+ 1

2
,j+ 1

2
− ψi+ 1

2
,j− 1

2
, (A2a)

gi,j+ 1
2

= φi,j+1 − φi,j − ψi+ 1
2
,j+ 1

2
+ ψi− 1

2
,j+ 1

2
. (A2b)

The horizontal velocity components are computed on the same edges according to

ui+ 1
2
,j = Ri+ 1

2
,j

(
〈wBx 〉i+ 1

2
,j − fi+ 1

2
,j

)
(A3a)

vi,j+ 1
2

= Ri,j+ 1
2

(
〈wBy 〉i,j+ 1

2
− gi,j+ 1

2

)
(A3b)

where we introduce 〈 · 〉i+ 1
2
,j to denote an average bringing cell-centered quantities onto

edges

〈wBx 〉i+ 1
2
,j ≡ 1

2
wi+1,jBx,i+1,j + 1

2
wi,jBx,i,j . (A4)

For clarity we introduce the variable

Ri+ 1
2
,j ≡

1

〈Bz 〉i+ 1
2
,j

, (A5)

which is how the reciprocal of Bz will be defined on cell edges.

The velocity definitions (A3) have been chosen so that the discretized induction equation

depends on φ alone, and may therefore be satisfied for arbitrary choices of ψi+ 1
2
,j+ 1

2
and wi,j.

The divergence is computed as a centered difference between all four edges

[∇ · (vhBz)]i,j = ui+ 1
2
,j〈Bz 〉i+ 1

2
,j − ui− 1

2
,j〈Bz 〉i− 1

2
,j

+ vi,j+ 1
2
〈Bz 〉i,j+ 1

2
− vi,j− 1

2
〈Bz 〉i,j− 1

2
.

When definitions (A3) are used in this it follows that[
∂Bz

∂t

]
i,j

= [∇ · (wBh − vhBz)]i,j = fi+ 1
2
,j − fi− 1

2
,j + gi,j+ 1

2
− gi,j− 1

2

= φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j ≡ ~4i,j · ~φ , (A6)
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Fig. 10.— The computational grid and locations of the variables.
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where ~4i,j is the finite-difference Laplacian at cell center (i, j). The induction equation is

satisfied once φi,j solves the standard Poisson equation on a square grid. The boundary

condition φ = 0 on ∂M is enforced by setting φi,j = 0 on all pixels outside the region M .

Even if equation (A6) is solved only approximately, the induction equation is independent

of the fields ψi+ 1
2
,j+ 1

2
and wi,j, at least to the level of the round-off errors incurred when

computing the telescoping sum.

Following the MEF derivation we specify the remaining quantities, ψi+ 1
2
,j+ 1

2
and wi,j,

by requiring that they minimize an energy functional. For clarity we show the numerical

implementation of this minimization for the case with no independent velocity information,

u = 0. In place of the energy functional, (10), we use a sum over gridded quantities

W (ψi+ 1
2
,j+ 1

2
, wi,j) =

∑
i,j

[
u2
i+ 1

2
,j

+ v2
i,j+ 1

2
+ w2

i,j

]
. (A7)

Performing a variation over wi,j yields

∂W

∂wi,j
= 2ui+ 1

2
,j

∂ui+ 1
2
,j

∂wi,j
+ 2ui− 1

2
,j

∂ui− 1
2
,j

∂wi,j
+

+ 2vi,j+ 1
2

∂vi,j+ 1
2

∂wi,j
+ 2vi,j− 1

2

∂vi,j− 1
2

∂wi,j
+ 2wi,j

= ui+ 1
2
,jRi+ 1

2
,jBx,i,j + ui− 1

2
,jRi− 1

2
,jBx,i,j +

+ vi,j+ 1
2
Ri,j+ 1

2
By,i,j + vi,j− 1

2
Ri,j− 1

2
By,i,j + 2wi,j

Setting this variation to zero, and substituting for u and v gives the coupled system of

equations

~Li,j · ~w ≡ 1
4
R2
i+ 1

2
,j
Bx,i,jBx,i+1,jwi+1,j + 1

4
R2
i− 1

2
,j
Bx,i,jBx,i−1,jwi−1,j

+ 1
4
R2
i,j+ 1

2
By,i,jBy,i,j+1wi,j+1 + 1

4
R2
i,j− 1

2
By,i,jBy,i,j−1wi,j−1 (A8)

+ 1
4
[(R2

i+ 1
2
,j

+R2
i− 1

2
,j

)B2
x,i,j + (R2

i,j+ 1
2

+R2
i,j− 1

2
)B2

y,i,j]wi,j + wi,j

= 1
2
(R2

i+ 1
2
,j
fi+ 1

2
,j +R2

i− 1
2
,j
fi− 1

2
,j)Bx,i,j

+ 1
2
(R2

i,j+ 1
2
gi,j+ 1

2
+R2

i,j− 1
2
gi,j− 1

2
)By,i,j .

The finite-difference operator ~Li,j has a compact five-point stencil, and reduces to |B|2/B2
z

in the continuum limit. The right hand side reduces to Bh · f/B2
z in the continuum limit,

yielding the algebraic equation (11). It is evident here that the discretized version of this

algebraic equation is a coupled linear system in the unknown wi,j. This system is solved by

relaxation in our implementation of MEF, using a boundary condition that wi,j = 0 in all

pixels outside the region M .



– 25 –

The character of ~Li,j can be further clarified by considering the case of uniform magnetic

fields. In that case the leading order expansion gives

~Li,j →
|B|2
B2
z

[
1 +

B2
x

4|B|2
∂2

∂x2
+

B2
y

4|B|2
∂2

∂y2

]
.

Inversion of this differential operator will tend to enhance high spatial frequencies, especially

where Bz becomes small. This is a natural result of the fact that w enters the horizontal

components of the energy through an average. Alternative formulations of equation (11),

not based on minimization of the grid energy, have been found to be unstable. We therefore

use eq. (A8) and suppress the highest frequencies of the result using a smoothing operation.

The final variation of the energy is

∂W

∂ψi+ 1
2
,j+ 1

2

= 2ui+ 1
2
,j

∂ui+ 1
2
,j

∂ψi+ 1
2
,j+ 1

2

+ 2ui+ 1
2
,j+1

∂ui+ 1
2
,j+1

∂ψi+ 1
2
,j+ 1

2

+

+ 2vi,j+ 1
2

∂vi,j+ 1
2

∂ψi+ 1
2
,j+ 1

2

+ 2vi+1,j+ 1
2

∂vi+1,j+ 1
2

∂ψi+ 1
2
,j+ 1

2

= −2ui+ 1
2
,jRi+ 1

2
,j + 2ui+ 1

2
,j+1Ri+ 1

2
,j+1 +

+ 2vi,j+ 1
2
Ri,j+ 1

2
− 2vi+1,j+ 1

2
Ri+1,j+ 1

2

Setting this variation to zero and substituting the velocity definitions (A3) yields another

coupled set of equations. The operator in this case has a five-point stencil over vertices,

and is a finite difference version of the second derivative in (12). The boundary condition

of ψi+ 1
2
,j+ 1

2
is imposed by following the cell-edges bounding M and integrating ψ to assure

that vh · n̂ = 0.
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