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ABSTRACT

Theories have long implicated magnetic reconnection in
many aspects of coronal activity including the general
process of coronal heating. Magnetic reconnection is fun-
damentally a change field line topology resulting from
some non-ideal term in the generalized Ohm’s law. Such
a non-ideal effect may dissipate energy directly, or it may
not, but it will topologically change field lines at a rate
proportional to the integrated electric field,

��
. In any

model where magnetic reconnection heats the corona the
heating rate will scale with this rate of reconnection. We
find that the observed scaling between heating power and
reconnection rate is consistent with models where photo-
spheric motions stress the coronal fields quasi-statically
and reconnection releases the energy suddenly, but does
not necessarily dissipate it. Such models are, in partic-
ular, consistent with the observation that X-ray luminos-
ity of a structure scales almost linearly with the magnetic
flux of that structure.
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1. INTRODUCTION

Models for heating the solar corona are typically des-
ignated as either AC or DC according to the frequency
range of the photospheric Poynting flux. AC models con-
sider frequencies at or above the fundamental frequency
of coronal oscillation (Ionson, 1984), so that the Poynt-
ing flux is essentially carried by waves. DC models, on
the other hand, consider the work done by the slowly
varying component of the Poynting flux. These describe
slow photospheric motions stressing the coronal field —
adding free energy by increasing its current density. This
process reaches a steady state, or at least a statistical
steady state, when some form of magnetic reconnection
manages to release energy at the same rate the stressing
is adding it.

In addition to dissipating energy, magnetic reconnection
changes the topology of magnetic field lines. The rate at
which field lines are topologically changed is quantified
by flux transfer rate

��
. The proposition that magnetic

reconnection, rather than say wave dissipation, heats the
corona is tantamount to the contention that the heating
power ��� scales somehow with the rate of reconnection

������� ��
	�� (1)

where 
���� . Such a scaling would not apply to heat-
ing by high-frequency waves, even if they were Ohmi-
cally dissipated, since then dissipation occurs during both

phases of an oscillation, while flux transfer cancels over
each period.

The present work reviews the different DC heating mod-
els, and finds that they may be further classified according
to whether the magnetic reconnection heats the corona
directly or indirectly. In direct models Ohmic dissipation
converts magnetic energy into heat. In indirect heating
models reconnection converts magnetic energy into some
non-thermal form, such as kinetic energy or wave energy,
which is then converted into heat more slowly than the
reconnection. The two types of models predict different
relationships between the heating rate and the magnetic
reconnection rate. (i.e. different exponents 
 in relation
[1]). The form of the heating which is actually in effect
may be determined, in principle, by independently quan-
tifying the reconnection rate

��
and heating rate ��� . The

scaling of indirect heating mechanisms appear consistent
with the data presently available.

2. RECONNECTION HEATING
MODELS

Magnetic reconnection was first suggested as a possible
mechanism for coronal heating by Parker (1972), in what
amounted to the first DC heating model. According to
his theory of topological dissipation, almost any motion
of the photospheric surface would tend to generate topo-
logical discontinuities in the coronal field. The efficacy of
such discontinuities at converting magnetic energy to heat
was investigated in detail by Tucker (1973) and Levine
(1974). Van Ballegooijen (1985) later suggested that
smooth photospheric motions might not generate tangen-
tial discontinuities, but would instead produce magnetic
structure of rapidly decreasing scales. In either scenario
the generation of small magnetic length scale, � , would
sufficiently diminish the dissipation time ������������� , that
it would match the photospheric driving time ��� . At this
point the energy supplied by photospheric motion would
be directly dissipated in the corona as heat. These are all
forms of directly dissipative (or direct) DC heating mod-
els.

In any such model the coronal plasma is heated directly
through Ohmic dissipation which is quadratic in the re-
sistive electric field: ���! "����� . If the resistive elec-
tric field is also responsible for changing magnetic field
topologies, as is fundamental to magnetic reconnection,
then the rate of topological change,

��
will be linearly

proportional to the electric field in some sense. The heat-
ing power from Ohmic dissipation will therefore scale
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quadratically with
��
:

� � �
�� ���� ��� � (2)

where the constant of proportionality is dimensionally the
inverse of a resistance. The net resistance

�
will natu-

rally depend on the local resistivity � as well as on the
magnetic field geometry. We refer to all models where
the heating power scales quadratically with flux transport
as dissipative models.

Heyvaerts and Priest (1984) proposed a coronal heating
model which invoked magnetic reconnection in a funda-
mentally different role. They proposed that the coronal
magnetic field was slowly stressed by photospheric mo-
tions, up to instants where it abruptly relaxed, releasing
its stored energy. The relaxation they proposed occurred
through reconnection at numerous unspecified sites, and
terminated ultimately in the Taylor state of minimum en-
ergy at constant helicity (Taylor, 1974): it was Taylor re-
laxation. The energy released ��� would be the differ-
ence in equilibrium energies of the states before and after
relaxation. The basic scenario was of quasi-static equi-
librium punctuated by sudden relaxation. A variant of
this basic scenario, quasi-static evolution punctuated by
punctuated relaxation, was proposed by Longcope (1996)
in three dimensions and Aly and Amari (1997) in two. In
each of these the photospheric stressing produced mag-
netic equilibria containing tangential discontinuities (cur-
rent sheets) which did not directly heat the corona, as
Parker had first proposed, but instead stored free mag-
netic energy. They proposed that these current sheets
would occasionally undergo fast magnetic reconnection
thereby releasing the energy they stored. This scenario,
dubbed stick-slip reconnection by Longcope (1996), re-
lied on reconnection which was much faster than the
stressing, �	��

� � � , but which was inactive most of the
time.

This class of models, to be called quasi-static models,
differ from dissipative models by assuming that the mag-
netic reconnection time is far smaller than the photo-
spheric driving time. The reconnection is only a means
by which stored magnetic energy is liberated and need
not correspond with the means by which it is dissipated.

The general scenario of short energy release following
quasi-static build-up has come to be termed “nanoflar-
ing” following Parker (1988). In this seminal paper pre-
dicting the small energy releases Parker actually pro-
posed them not as an energy release but as an energy
dissipation mechanism; the model was proposed as a
time-variable version of his earlier topological dissipa-
tion model (Parker, 1972). It was subsequently shown
that the hypothesized nanoflares could also explain the
puzzling form of the corona’s differential emission mea-
sure (Sturrock et al., 1990; Cargill, 1994). In spite of their
wide-spread use in solar modeling, conclusive evidence
that these small energy releases ( ��� ��� � ��� erg) occur
at all is still being sought. The present work focuses on
discriminating between the possible roles of reconnection
in coronal heating and will discuss nanoflares no further.

By definition punctuated reconnection transfers flux in
discrete parcels � � at intervals ��� . Averaging over nu-
merous individual events leads to a average rate of flux
transfer rate

�� ����� � ������� . In quasi-static models the
heating rate is proportional to the energy release rate
which must be linear in flux transfer

� � ��������

�� �

(3)

where the constant of proportionality has units of current.
This scaling is a straightforward consequence of the as-
sumed quasi-static nature, according to which the net en-
ergy liberated will depend only on the net flux transfered
regardless of how infrequently the transfers occurred (i.e.
both

��
and ��� will be inversely proportional to the event

interval ��� ).
Quasi-static models invoke reconnection as a means of
flux transfer but not of energy dissipation. While this
leaves unanswered the issue of energy dissipation, it
makes a testable predictions about both the rate and lo-
cations of magnetic energy liberation. It is possible to
discriminate between these two classes of reconnection
heating models, dissipative and quasi-static, if we can in-
dependently measure both the rate of reconnection

��
and

the heating power � � . While the flux transfer rate
��

is
only incidentally related to heating in dissipative models
it seems unlikely that we might measure both the heating
rate and the Ohmic dissipation rate in the solar corona in-
dependently. We review below several methods for mea-
suring or inferring the flux transfer rate and comparing it
to the heating rate.

3. RELATION TO RECONNECTION
THEORIES

The possible independence of flux transfer and energy
dissipation in a reconnection process seems more natural
today than it did at the time dissipation heating models
were first proposed. Early models of magnetic reconnec-
tion considered uniform magnetic diffusivity � to be the
most likely mechanisms for both flux transfer and dissi-
pation. Sweet and Parker (Sweet, 1958a; Parker, 1957)
found that reconnection at a current sheet proceeded at a
rate scaling with the diffusion coefficient as

�� � �! #" � .
This was recognized to be very slow under coronal con-
ditions, unless the diffusivity was somehow enhanced.

It is noteworthy, however, that both flux transfer and dis-
sipation occur at proportional rates in Sweet-Parker re-
connection. According to the Sweet-Parker model, the
self-consistent current sheet has a thickness $ � �% #" � ,
while its length & (typically in the ignorable direction)
and width ' are set by global geometry. The total resis-
tance of such a current sheet is therefore

� ���(&
�)'*$ �
�! #" � . Since the effective resistance scales with reconnec-
tion rate,

� �
��
, eq. (2) gives power dissipation � � � ��

for a single Sweet-Parker current sheet. Both flux trans-
fer and energy dissipation thus proceed at disappointingly
small rates.
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An illuminating counter-example is found in the flux pile-
up regime observed in simulations of two-dimensional
coalescence instabilities (Biskamp and Welter, 1980;
DeLuca and Craig, 1992; Rickard and Craig, 1993). In
their non-linear regime these simulations exhibit current
sheets with magnetic field strength at their edges, ��� , lo-
cally enhanced by a factor scaling inversely with resis-
tivity: � � � �������	� . Sweet-Parker scaling using the
enhanced Alfvén speed yields a current sheet thickness
$ � � 
 ���  
 " � and a peak current density � � � � 
 �����  
 " � .
The flux transfer across this narrower current sheet,

�� �� 
  �� ��� 
 " � , scales as a lower power of resistivity than clas-
sic Sweet-Parker scaling ( � �!� ), becoming genuinely
fast (independent of resistivity) at the value ��� � ��� .
Numerical simulations do in fact show a peak flux trans-
fer rate which is approximately independent of resistivity
(Biskamp and Welter, 1980), suggesting a flux pile-up pa-
rameter ��� � ��� .

The total total resistance of the thinner current sheet is� � � 
  ���� 
 " � , yielding an Ohmic dissipation power
��� � � 
  ������ 
 " � . For anything other than classic Sweet-
Parker (i.e. for ������ ) flux transfer and Ohmic dissipation
scale as different powers of resistivity and thus would
be unlikely to be proportional in a particular situation.
For values � � � ��� , which includes that from numerical
simulations, heating power scales inversely with resistiv-
ity, suggesting that such flux pile-up mechanisms would
quickly exhaust all free-energy before achieving signif-
icant flux transfer (Craig et al., 1993). The enhanced
current sheet in coalescence simulations results from the
collision between the islands. The faster reconnection ap-
pears to stall when this initial kinetic energy has been dis-
sipated.

In order to explain fast magnetic flux transfer, for which
there is ample evidence in solar flares, it was deemed
necessary to eliminate the global current sheet which
had been recognized as the obstruction to the outflows.
Petschek (1964) proposed one scheme where plasma ac-
celeration occurred at four slow shocks linked to a mag-
netic X-point. The slow-mode shocks were an alterna-
tive to the constrictive current sheet, and the reconnec-
tion proceeded at a much more acceptable rate since it
scaled as � � ���! #"%$ ��&'� . Unfortunately, numerical simu-
lations using uniform diffusivity did not show Petschek-
like reconnection, but exhibited instead the spontaneous
formation of the troublesome current sheets along with
the slow Sweet-Parker reconnection rate they demanded
(Biskamp, 1986).

Several numerical simulations had in fact exhibited
Petschek reconnection structure, but all had invoked a
magnetic diffusivity enhancement within a small region
(Ugai and Tsuda, 1977; Scholer and Roth, 1987), often
through an assumed current-density dependence in the
anamolous resistivity. Other studies of reconnection un-
der collisionless conditions had used a generalized Ohm’s
law containing terms such as electron inertia or the Hall
term, which transfered flux but without significant en-
ergy dissipation. In a remarkable series of simulations
Birn et al. (2001) showed that various collisionless mech-

anisms, or combinations thereof, led to the spontaneous
development of an X-type geometry similar to Petschek’s
and also to fast magnetic reconnection.

It has been recently recognized that these models and
those collisional models using locally enhanced diffusiv-
ity produce fast reconnection for the same underlying rea-
son: they break the frozen-flux law only in a small re-
gion (Erkaev et al., 2000; Kulsrud, 2001; Biskamp and
Schwarz, 2001). It turns out that fast reconnection is in-
consistent with spatially uniform diffusion, but will hap-
pen naturally whenever the local rate of diffusion, or any
other non-ideal field line transport, is locally enhanced.
The degree of enhancement is not nearly as important as
its localization (Biskamp and Schwarz, 2001).
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Figure 1. Schematic of localized reconnection occurring
with a ball of diameter $ .

Localization has the effect of changing reconnection from
a dissipative to a flux-transfer process, which has pro-
found significance for coronal heating models. It is pos-
sible to topologically change a significant number of field
lines as they pass through a small region since they are
one-dimensional curves. Consider the field lines ad-
vected by Alfvénic reconnection flow through a ball of
very small diameter $ . Flux will pass through this ball at
a rate

�� � $(�*)�+ . The current density within the ball
will be � � � �)$ , and the electric field  �

�� � $ . In-
tegrating the Ohmic dissipation rate  ,� over the volume
gives dissipation power

� � �  -� $ � � � � ) + $ � � ) �  +
�� � �

consistent with eq. (2). Localized reconnection is there-
fore much more efficient at flux transfer than at energy
dissipation:

�� � $ whereas ��� � $ � . The heart of the
problem is that small-scale structures can dissipate only a
small amount of energy even as they globally change the
magnetic topology.

Localized reconnection can liberate magnetic field en-
ergy at the same rate it transfers flux, even though it
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cannot dissipate energy so rapidly. Figure 1 shows two
tubes each of flux ��� which are reconnected by resistiv-
ity confined to a ball. The dissipation will decrease the
magnetic energy by as much as � � � � ��� ���)$ , the free
energy within the ball. By changing the footpoints of the
tubes, however, the reconnection permits each to become
shorter thereby reducing the overall equilibrium magnetic
energy by � � � ����� ��� � �)& . For very small flux
tubes this far exceeds the power dissipated in the recon-
nection process so there will be kinetic energy left after
the reconnection. It is the dissipation of this kinetic en-
ergy which will ultimately provide heating. The salient
point is that the localized reconnection released the mag-
netic energy rapidly, but could not dissipate it.

Detailed physical support for these estimates can be
found in a number of fully dynamic, two-dimensional
calculations of non-steady reconnection localized in
space (Semenov et al., 1983; Biernat and Heyn, 1987;
Heyn and Semenov, 1996; Semenov et al., 1998; Nitta
et al., 2002). All of these calculations begin with an in-
finitesimally thin current sheet separating two layers of
uniform, opposing field (see fig. 2). They follow the ideal
( � � � ) external response to fast reconnection occurring
at a single point on the sheet (or very small region) with
the prescribed time-dependent rate

�� �� �$���& & , switched
on at some time � � . In spite of the time-dependence, the
central region resembles the steady-state Petschek con-
figuration with four slow mode shocks linked to the re-
connection site. Due to the sudden turn-on, however, the
shock structures are finite and enclose “bubbles” of much
weaker field and bulk flow velocity � )�+ (see fig. 2).
Since the non-ideal electric field is confined to the small
region on the current sheet, the slow shocks do not dissi-
pate any energy, but they do convert free magnetic energy
to kinetic energy to form the bubbles (Semenov et al.,
1998).

Even if magnetic reconnection ceases (see bottom panel
of fig. 2) the slow shocks and the bubbles they enclose
continue traveling outward at the Alfvén speed. Two bun-
dles of flux � � ��� ���� � were broken and reconnected to
form hair-pin shaped post-reconnection tubes; these are
the analogs of the flux tubes in fig. 1. Immediately fol-
lowing the reconnection magnetic tension at the curves
of post-reconnection hair-pins causes a rapid retraction.
As they retract the overall magnetic energy decreases and
the kinetic energy increases (the bubbles continue sweep-
ing up mass, Semenov et al., 1998). The total magnetic
energy ultimately released will depend on the anchoring
of the reconnected field lines far from the reconnection
site (this was also the case in the simple cartoon of fig.
1). If the field finds a new equilibrium, after dissipating
the kinetic energy of the bubbles, it will be lower than the
initial energy by some amount ��� � � � proportional
to the net reconnected flux. Thus the energy released by
the reconnection depends on the net flux transfered and
on global parameters but not on the reconnection rate; in
contrast, the energy dissipated by reconnection does de-
pend on the reconnection rate and will be must smaller
owing to its localization.

The foregoing examples serve to illustrate the relation-
ship between flux transfer � � and magnetic energy re-
lease ��� in several simple geometries. The relation-
ship has been generalized to three-dimensional coronal
geometries of arbitrary complexity by Longcope (2001)
in the theory of flux constrained equilibria (FCE). A
three-dimensional coronal field of arbitrary complexity
can transfer flux at each of its magnetic separators so flux
transfer is quantified by a vector ����� . The free energy
of a given equilibrium will be a function of the fluxes
presently enclosed by each of the separators, � $	� � & .
Small flux transfers across various separators will change
the total energy by

��� ��
 �
� �� ��� ��� ��
 (4)

This is the generalization, to arbitrary coronal geometry,
of the ��� � � � proportionality described above.

The energies ��� � � � liberated by successive
fast releases produce a time-averaged power � � �
� ��� � ����� � ��

, as a natural consequence of the punc-
tuated quasi-static process. This power must match the
averaged heating rate but will far exceed the Ohmic dis-
sipation rate � ��� ��� � �� � .

Figure 2. The time-dependent solution of Biernat and
Heyn (1987) at three successive times proceeding from
top to bottom. Uniform layers of opposite field (black) are
separated by an infinitesimally thin current sheet (green).
Reconnection occurs at a small region at the center of the
current sheet, creating hair-pin shaped reconnected field
lines (blue), bounded by separatrices (magenta). The re-
connection pulse persists only through the time of the
middle panel, so a central section of current sheet has
reformed by the time of the bottom panel. Slow shocks
(red) extend outward from the reconnection site, while re-
connection occurs. The slow shocks enclose two bubbles
of approximately vertical reconnected field which prop-
agated away from reconnection site at the down-stream
Alfvén speed.
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4. OBSERVATIONAL CONSTRAINTS

Reconnection heating mechanisms may be classified ac-
cording to how the heating rate scales with the flux trans-
fer rate. Which category of mechanism is actually at work
may therefore be observationally determined by measur-
ing the heating rate and the flux transfer rate indepen-
dently. A review by Withbroe and Noyes (1977) sum-
marized the state of knowledge by listing heat fluxes,� ��� �����	�
�����  
��� � ��� for each of three generic portion of
the corona: active region, quiet Sun and coronal hole.
These values remain an important constraint on coronal
heating mechanisms today.

There has traditionally been less effort devoted to measur-
ing the rate at which magnetic field lines are reconnected.
In order to even make sense of this quantity one must as-
certain which field lines are being topologically changed.
Posed more concretely, “Which two kinds of field lines
are being destroyed and which two kinds are being cre-
ated?” Only when that is known can one hope to measure
the rate at which this flux transfer takes place.

The most well-known measurements of this kind were
made for the reconnection following two-ribbon flares.
The reconnection is thought to occur in the wake of
an eruption, converting newly opened field lines, rooted
in each polarity, into one closed field line inter-linking
the polarities and one field line open at both ends.
According to this picture, the chromospheric ribbons
mark the boundary between pre-reconnection and post-
reconnection field lines. The progress of the ribbons
across the photosphere is equivalent to the reconnection
rate

��
. Fletcher and Hudson (2001) tracked the ribbons

of the 2000-July-14 flare, observed in the 195 Å images
of TRACE, across a magnetogram from SOHO MDI.
This yielded reconnection rates of

��
between ��� � �  �� –� ��� � �  �� Mx/sec (500 MV – 2,000 MV) for the period

following the flare. A troubling aspect of the observations
was that measurements from each polarity, which should
in principle agree, differed by more than a factor of two
(Fletcher and Hudson, 2001).

When considering reconnection in non-flaring contexts it
becomes even more difficult to establish observationally
which field lines are being reconnected. Indeed, there is
a limit to the level of detail with which we can determine
the topology of coronal magnetic field lines at all. We
are therefore restricted to measuring the flux transfer rate
in cases with clearly distinguishable topological classes
of field lines. The cases where these distinctions may
be most clearly made are those with footpoints lying in
distinct photospheric flux concentrations, hereafter called
sources.

The topological theory of coronal field anchored in
distinct photospheric source regions, called Magnetic
Charge Topology, has been developed by numerous au-
thors beginning with Sweet (1958b), Baum and Bratenahl
(1980) and Gorbachev et al. (1988). A general quantita-
tive theory has been developed by Longcope in a series
of papers (Longcope, 1996, 2001; Longcope and Klap-

per, 2002). Domains of distinct field lines are separated
by magnetic separatrices which are the fan surfaces of
magnetic null points. Most null points lie in the photo-
spheric areas, surrounding the source regions, which are
assumed to have no vertical field ( ��� � � ). The sep-
aratrices intersect along a network of separators, which
are each individual field lines when the coronal field is
smooth, but become current sheets in more general cases
(Longcope, 2001).

The allocation of fluxes in all domains can be found from
the flux in each source region and the integrated flux
through each closed separator loop (Longcope and Klap-
per, 2002). It follows that any change in domain fluxes
must occur either through emergence or separator recon-
nection. Neglecting for the moment possible emergence
through the photosphere, the rate at which flux in domain�

changes is proportional to the loop voltage on one or
more separators which enclose it. It is this loop voltage
which may be determined both theoretically and, in some
cases, observationally.

4.1 The general scaling law

Considered in general, coronal heating provides some
generic portion of the atmosphere with a volumetric heat-
ing rate � . The only way to define a flux transfer rate

��
in such a vague setting is to posit a time � ������� in which a
typical field line is reconnected once. Within a region
of net flux

�
the flux transfer rate will be on average�� � � ��� ������� . The heating attributable to magnetic re-

connection should scale linearly or quadratically with this
this in the quasi-static and dissipative models respectively

� � �
��  � ������
 � � �!����� �

quasi-static

� ��� $ � � �������� & 
 �
dissipative

(5)

Schrijver et al. (1985) and Schrijver et al. (1989) re-
ported different flux-flux relations which combine to
yield a nearly linear relation between photospheric mag-
netic field strength and X-ray flux (

�#" � �  %$  , see Schri-
jver and Zwaan, 2000). More recently, Pevtsov et al.
(2003) produced a composite data set recording soft X-
ray luminosity, & " (over the band-pass 2.8–36.6Å), and
total flux

�
for various magnetic structures spanning

more than fourteen orders of magnitude in
�

. The com-
posite data set includes coronal bright points (Longcope
et al., 2001), active regions (Fisher et al., 1998), the Sun
as a star and T-Tauri stars. They found X-ray luminosity
was fit by the relationship

& " � � 
 � � � � ��& ����� �'���(�)�+* �� � �� -,  %$  � � (6)

particularly well for all solar structures.

Making the further assumption that X-ray luminosity
over the observed pass band is proportional to net coro-
nal heating power, & " �/. � � , implies that heating power
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scales almost linearly with flux as predicted by quasi-
static models. The data implies that the combinations of
proportionality constants, .�� ����
 ��� �!����� is approximately
equal to � � � ���
�	�
�����  ��� �  � � �'& A/sec almost in-
dependent of

�
. It is also possible to explain this rela-

tionship with dissipative models, provided the product of
constants

� � ��!����� scales almost linearly with the total flux
of the feature. We show below how a theoretical model
which can explain the former scaling.

The constant . may be found by comparing relation (6)
to the heat flux reported by Withbroe and Noyes (1977)
in their review:

� � � � � � � � ����� �'���(��� ��� � in the quiet
Sun. The corona of the quiet Sun is primarily structured
by the network flux elements whose average unsigned
flux density was reported to be � � � � � � � � 
 � ��� � ��� �
by Schrijver et al. (1997).1 Using this flux density in
the scaling of Pevtsov et al. (2003) gives a soft X-ray
flux of

� " � � � � ��� �����	�
�����  ��� � � for a generic quiet
Sun region. Dividing this by the heating power (With-
broe and Noyes, 1977) we deduce that the soft X-ray
luminosity accounts for .�� �#" � � � � � 
 � ����� of the
total heating power. Withbroe and Noyes (1977) esti-
mate that only one-third of the deposited heat is radiated
(
�
	 � � � � ���
�	�
��� �  ��� � � ) while the remaining two-

thirds is conducted downward. Our ratio indicates that
� . � �

% of the quiet Sun radiation occurs within the
bandpass of 2.8–36.6Å used by Pevtsov et al. (2003); this
is not unreasonable for a plasma at about one to two mil-
lion Kelvins (Loren Acton, private communications).

Dividing the observed trend by the value of . inferred
above gives reconnection heating constant � ����
 ��� �!����� �
� 
 � � � � � A/sec. This value appears to vary only slightly
with the size of the magnetic structure involved. As a
further check, we note that the flux density typical of
plage, � � � � ��� �'��� � , predicts a heat flux of

� � �
� 
 � � � ��� �����	�
�����  
��� � � , consistent with the value ex-
pected in an active region (Withbroe and Noyes, 1977).

4.2 Quiet Sun recycling time

An observational study by Close et al. (2004) estimates
the field line recycling times scale �	�!����� in the quiet Sun to
be roughly 2 hours. They identified photospheric sources
in each of 50 high-resolution MDI magnetograms of disk-
center quiet Sun, made at a 15-minute cadence. The flux��


and centroid location is determined for each source re-
gion above a threshold magnetic field. A potential field is
extrapolated from point sources with matching fluxes and
locations. Randomly selected field lines are integrated
from each source within the 80 Mm � 80 Mm central re-
gion in order to determine the fluxes ��� in each of their
interconnecting domains. The interconnecting flux must
relate to the photospheric flux according to the balance
law
� 
 ��� ��� 
 � � � , where the incidence matrix � 
 � is

1There is at least an order of magnitude more flux in intranetwork
fields (Lin and Rimmele, 1999; Lites, 2002), but since this is mixed
and structured on very fine scales, it will not contribute flux to coronal
heights. Recent work has shown that the intranetwork field will con-
tribute field lines (Schrijver and Title, 2003), affecting the topology, but
this does not change the net flux at coronal heights.

unity if domain
�

connects to source � and zero if it does
not (Longcope, 2001).

The rates of flux change,
���


and
���� , in time-evolving po-

tential field can be determined by associating sources be-
tween successive magnetograms and repeating the proce-
dure above for each time. Any change in the photospheric
flux,

���

, must occur through emergence or submergence

across the photosphere. The ratio � � 
 � �� 
 � gives char-
acteristic time over which source flux will be changed;
a time-scale for emergence/submergence. Averaging this
over all sources Close et al. (2004) find a time-scale for
recycling the photospheric flux � � � hours, consistent
with those from previous studies of quiet Sun flux ele-
ments (Hagenaar, 2001; Hagenaar et al., 2003).

Changes in the source fluxes and source locations cause
the domain fluxes ��� to vary in time. Since it is always
possible to define an incidence matrix which is constant
over a given interval, the flux changes must be related
according to �� 
 � 
 
 � 
 � �� � 
 (7)

Changes due to coronal reconnection alone,
�� � � � � ,

must be consistent with no photospheric changes at all,� ��� 
 � � � � � . Any remaining changes must be at-
tributed to the effects of emergence and submerge, � �
��� ��� � � .
The decomposition of

���� into reconnection and emer-
gence/submergence contributions cannot, however, be
unique since the incidence matrix � 
 � is almost always
singular2 (Longcope, 2001). Close et al. (2004) propose
two different schemes for performing the decomposition,
thereby yielding two estimates of the quiet Sun recycling
time. In the first they time-average the source flux �� 

between successive steps, so that

���
 � � and any ob-
served domain flux changes must be due to reconnection
alone. In the second they require all emergence or sub-
mergence to occur with a subset of domains (a minimum
spanning tree) whose incidence matrix is invertible. They
then solve for � � from the observed

���

, and from this find

the reconnection rate
� � � �� ��� � � .

The two different methods described above lead to two
different vectors

� � which lead in turn to recycling times
of � �!����� � � hours and �	�!����� � � 
 � hours respectively.
The rough agreement between these different methods
gives some confidence that the typical coronal recycling
time in the quiet Sun corona is somewhere around 2
hours. This means that each photospheric footpoint is
connected, via coronal field, to about 8 different partners
during its 15 hour life. If the heat for the quiet Sun corona
can be attributed to reconnection then it must arise from
effects of this frequent footpoint swapping. The con-
stant of proportionality for a 2-hour recycling time will
be � ����
 � � � ����� ��� � �!����� � � �  � Amps. While it has

2The only exceptions are fields without separators, which are un-
likely to occur in a realistic, complex field.
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units of current, this is simply the constant relating recon-
nection rate to heating rate in the quiet Sun according to
(3). We show below that in a geometric model this value
does correspond to the current across which the recon-
nection has occurred.

4.3 X-ray bright points

X-ray bright points are small ( � � � � Mm) regions of
coronal emission typically in coronal holes or regions of
quiet Sun, almost always associated with pairs of oppo-
site magnetic sources (Krieger et al., 1971; Golub et al.,
1974, 1977). The coincidence between the coronal emis-
sion and magnetic sources has motivated several models
in which bright points are heated by magnetic reconnec-
tion (Parnell et al., 1994; Longcope, 1998). A survey
by Longcope et al. (2001) found 285 bright points in
EIT observations and matched them to bipoles in near-
simultaneous MDI magnetograms. The net power heat-
ing the bright point, � � , was calculated by matching the
emissions in two EUV bands (171 Å and 195 Å) to an
equilibrium loop model. This power turned out to be
clearly correlated with the magnetic flux in the photo-
spheric sources: � � � � � �
& ����� �'���(��$ � � � �  � ��� & . A
subset of the bright points were subsequently identified
in Yohkoh images and used in the compilation of Pevtsov
et al. (2003); they fill in the � � � �  � ��� �

�
� � � � �

Mx range of scaling (6). The ratio of the fits reported in
these two papers give & " � � � � � 
 � � , corroborating the
value of . deduced above.

A more recent survey by Aver et al. (2005) uses multi-
ple five-minute-averaged MDI magnetograms, spanning
three hours, to derive a relative velocity � between the
photospheric poles of each bright point. Poles separated
by
�

and moving toward each other with radial veloc-
ity � ) 	 will collide in a time � � � ��� ) 	 � . There are
54 converging bipoles, defined as those with relative ve-
locity within � ��� of the line of separation, whose aver-
age and median lifetimes are 23.9 and 11.9 hours respec-
tively. Using the lifetime to estimate the reconnection
rate

�� � � ��� , Aver et al. (2005) find a strong correla-
tion with ��� , shown in fig. 3. The dashed line, marking a
reconnection constant of � ����
 � � �  � Amps passes near
the center of these points. It is noteworthy that the power
is correlated far more strongly with the product

� � ) 	 � ,
and that a line defined by the constant of proportionality
�	�	� � � G lies underneath the majority of points.

5. SEPARATOR CURRENTS

5.1 The Minimum Current Corona Model

The Minimum Current Corona model (MCC, Longcope,
1996, 2001) provides a theoretical context in which the
coronal heating constant � ��� 
 may be interpreted. When
two opposing photospheric sources of flux

�
� and

�
�

approach one another, as in an X-ray bright point, the
coronal field lines interconnecting the two sources com-
pose a domain with net flux � , enclosed by a separator
(see fig. 4). The domain flux for a potential corona, � 
�� 
 ,

Figure 3. Data from a survey of EUV bright points with
converging poles (Aver et al., 2005). The left panel shows
the heating power � � vs. an estimate of the reconnec-
tion rate

��
. The dashed line shows the curve defined by

������
 � � �  # Amps. The right panel shows � � against
the product

� � ) 	 � . The dashed line show �	� � � ) 	 � for
� � � � G (lower) and �	� � � � G (upper). The signif-
icance listed at the top is from the Spearman rank order
correlation statistic (Press et al., 1986)

will naturally increase as the sources approach. This oc-
curs through kinematic reconnection along the separator
(Greene, 1988; Lau and Finn, 1990). The reconnection
rate

�� 
�� 
 is the integrated electric field parallel to the sep-
arator field line (Sweet, 1958b; Longcope and Cowley,
1996).

Figure 4. The MCC applied to a pair of converging
sources, shown as blue crosses. Representative intercon-
necting field lines are shown in green. The blue solid
line is the separator field line of the potential field, the
dashed line closes the path along the photosphere. All in-
terconnecting field lines must pass through this loop. The
separator current sheet is indicated by red ribs.

A highly conducting plasma will not admit an electric
field parallel to any coronal field line, even the separa-
tor field line, so

�� � � and the field cannot remain po-
tential. The potential field is the one which minimizes
the magnetic energy of the corona subject to the distri-
bution of photospheric flux. Seeking a minimum subject
to the additional constraint provided by the fixed inter-
connecting flux � yields the flux constrained equilibrium
(FCE) defined by Longcope (2001). The Euler-Lagrange
equation from the variation shows the equilibrium to be
current-free everywhere except for a singular layer along
the separator.
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The transformation of the separator from a line in the
potential field to a ribbon-like surface is analogous to
the deformation of a two-dimensional potential X-point
into a current sheet, first described by Green (1965) and
later by Syrovatskii (1971). The Green-Syrovatskii cur-
rent sheet is, in fact, the basic element of the FCE in
two-dimensions (Aly and Amari, 1997; Longcope, 2001).
A three-dimensional field linking � distinct photospheric
sources by coronal field lines in � different domain will
have at least � � ��� � separators all of which will be
current sheets in the FCE (Longcope and Klapper, 2002).

The FCE can be constructed as the sum of the potential
field and a field due to its separator current sheets. A
separator of length & carrying a relatively small current
� will generate a self-flux approximately (Longcope and
Silva, 1998; Longcope and Magara, 2004)

� 
 � � 
 � � &  #" $�� ��� � � � � & � (8)

where ��� � 
 � ��� is the base of the natural logarithm, and
� � is a parameter related to the average magnetic shear
along the potential field’s separator. In order to match the
required domain flux, a field with a single current sheet
must have a self-flux � 
 � � 
 � ���
	 � � � 
�� 
 . Invert-
ing relation (8) yields the current ��$�� � & in terms of the
difference between the actual domain flux and that of a
potential field from the present photospheric field distri-
bution. As the photospheric field evolves so does � 
�� 
 ,
and hence ��� , which means the current grows. This is
the nature of photospheric stressing in the minimum cur-
rent corona model.

The imposition of flux constraints means that the FCE has
an energy above that of the potential field (the absolute
minimum) by

������
�� $ � & �  � & � �  " * � � � �� � � , �
(9)

(Longcope and Silva, 1998; Longcope and Magara,
2004). The actual coronal field will probably be subject
to numerous constraints beyond that on its domain fluxes,
such as on its helicity or the photospheric footpoints of
specific field lines (line tying), so eq. (9) represent a lower
bound on the free energy of the coronal field. It does,
however, represent energy stored by that one constraint
which will be eliminated by magnetic reconnection trans-
ferring flux across the separator. Other constraints, for
example the helicity constraint, are far more robust and
their associated energy will be less accessible to a heat-
ing mechanism. Thus ������
�� is a reasonable estimate
of the energy release by separator reconnection.

The approaching sources from fig. 4, by generating a po-
tential loop-voltage

�� 
�� 
 will produce a separator current
increasing at

�
� � * � � 
 � � 
� � , �  �� 
�� 
 � & �  

�� 
�� 
 
 (10)

Reconnection triggered when the current reaches a
threshold, � � � � �


�� 

, will occur after a delay ��� �

�

�� 
 ��� ���� . The repeated releases of energy ��� ��
�� $ �


�� 

&

at this interval will produce an average heating power

� � � �
�
� � ����
�� $ �


�� 

&

� 
�� 
 � �

�� 
 �� 
�� 
 � (11)

up to a ratio of logarithms of arguments proportional to
� � �)� 
�� 
 . The repeated reconnection will keep � � � 
�� 
 ,
so the average heating will be linear in the reconnection
rate with a constant given by the reconnection threshold
������
 � � 
�� 
 .
5.2 Observations

Kankelborg and Longcope (1999) and Longcope and
Kankelborg (2001) studied TRACE observations of a
bright point that appeared near disk center on 1998 June
17 (see fig. 5). Two poles, each of � � 
 � � � �  � Mx, sep-
arated by

� � ��� 
 � Mm approach one another at
�� �� � ��� � �'���(� . After the subtracting observed submer-

gence rate, � � � 
 � � � �  & ��� � �
��� , the vacuum recon-
nection rate was found to be

�� 
�� 
 � � 
 ��� � �  & ��� � �
���
(1.6 MV). The MCC predicts that current will accumu-
late quasi-statically along the 25 Mm long separator at a
rate

�
� � � 
 � � � � � Amps/sec.

The TRACE observations show a coronal loop intercon-
necting the converging poles. Matching to the magnetic
model shows that the loop contains � � � � 
 � � � �  � Mx
(see fig. 5) — roughly 20 minutes of accumulated flux. If
this represented all of the flux accumulated before recon-
nection then the threshold current would be only � 
 � � � � �
Amps; far less than needed to produce a heating power� � � � �
& erg/sec typical of a bright point. Matching
such a heating rate would require that ��� � �! � Amps had
accumulated on the separator prior to any reconnection.
That is to say, significant reconnection did not occur for
about � � � hours during which time the separator cur-
rent sheet stored magnetic energy. Releasing this stored
energy through fast reconnection would power the coro-
nal bright point, although the dissipation of the energy
would have to occur rather slowly to explain the observed
life time of the bright point being far longer than a free
cooling time (Longcope and Kankelborg, 2001).

A similar separator reconnection scenario, on a much
larger spatial scale, was used by Longcope et al. (2005) to
model reconnection between neighboring active regions.
They studied the emergence of active region 9574 in the
immediate vicinity of an existing active region (9570)
over the course of two days (2001 Aug. 10–11). Obser-
vations by TRACE (171 Å, see fig. 6) and Yohkoh (SXT)
show numerous coronal loops interconnecting the leading
(negative) polarity of AR 9570 to the trailing (positive)
polarity of AR 9574. Sequential magnetograms (MDI)
show the polarities of 9574 begin emerging at 7:30 on
Aug 10 at a rate � � � 
 � � � �  �� Mx/sec and separat-
ing at

�� � � � � m/sec (quite remarkably this is the same
speed at which the tiny poles of the aforementioned XBP
were converging). A magnetic model based on this data
shows reconnection across the potential-field separator at�� 
�� 
 � � 
 � � � �  � Mx/sec.



9

Figure 5. An EUV bright point studied by Kankelborg
and Longcope (1999) and Longcope and Kankelborg
(2001). Top panel is the background-subtracted TRACE
171 Å image. Bottom panel is the post-reconnection loop
of $ � � � 
 � � � �  � Mx, from the magnetic model. Tri-
angles are the photospheric null points, dashed lines are
from their fan surfaces and the solid curve connecting
them is the separator (Reproduced from Longcope and
Kankelborg, 2001).

Figure 6. Active region AR9574 emerging to the North
in the presence of existing active region AR9570 (South).
Top panel shows a back-ground subtracted TRACE 171
Å image. Sources from the magnetic model are shown in
red, along with several of the null points and the foot-
prints of the separatrix surfaces. The horizontal black
line was the line across which the interconnecting field
lines were identified. The bottom panel shows features of
the magnetic model along with a single post-reconnection
flux tube of ��� � �)� � �  � Mx. (Reproduced from Long-
cope et al., 2005)



10

Interconnection loops were identified in the 41 hours of
TRACE data using a horizontal strip separating the two
active regions (see fig. 6). By summing up the cross sec-
tional areas of all observed loops (assuming circular cross
section) Longcope et al. (2005) estimate the actual re-
connection. Assuming the observed loops have a ratio of
field strength to filling factor of 65 G (the field strength
in a potential fields is � � � G), and advancing the time-
sequence 3 hours to account for post-reconnection cool-
ing, they obtain the observed � $���& shown in fig. 7. It is
notable that little reconnection occurs during the first 24
hours of emergence, in spite of the steady requirement
for it in the potential field (i.e. � 
�� 
 ). When the reconnec-
tion does occur it transfers a significant fraction of the
accumulated flux (65 G was chosen to make it 100%)
in only 3 hours, at a rate as large as

�� � � 
 � � � �  ��
Mx/sec � 260 MV. This coincides, after accounting for
a 3-hour cooling delay, with a period of elevated X-ray
emission (though not a flare) from which the GOES 1–
8 Å band observed �  !� � � � � � � ergs. In the MCC
model the separator current has built to ��� � � � �  �
Amps, after 24-hours of accumulation, storing an energy
��� ��
�� � � 
 � � � � � � ergs comfortably larger than the
total observed in 1–8 Å X-rays. As in the coronal bright
point, the post-reconnection loops remain bright much
longer than the free cooling time. This suggests that the
energy released by reconnection, perhaps transformed to
waves or kinetic energy, was dissipated more gradually
in the time following the reconnection (Longcope et al.,
2005).

Figure 7. The flux interconnecting ARs 9574 to 9570.
Bottom panel shows flux � 
�� 
 (dashed) and the flux in-
ferred from EUV images (solid). Top panel shows the
disk-integrated SXR flux in GOES 1–8 Å band.

6. SUMMARY

This review has posited that coronal heating power, if
it is generated by magnetic reconnection, must scale as
some power of the rate

��
at which reconnection occurs.

Those scalings arising from energy release after quasi-
static stressing, ��� � � ����


��
, seem consistent with a

wide variety of observational data. The constant of pro-
portionality, ������
 , has different interpretations in differ-

ent quasi-static models. In the Minimum Current Corona
(MCC) model it represents the current along the separator
at which the reconnection occurs.

A compilation of a wide variety of coronal structures in-
dicates general heating at a rate proportional to the struc-
ture’s net flux. The constant of proportionality in this
relationship suggests that � ����
 ��� �!����� � � � � Amps/sec,
where � �!����� is the typical time over which a field line in
the structure is reconnected. Observations of particular
X-ray bright points and active regions give different val-
ues of ������
 ranging from � �  � to � �  # Amps, but the ratio
seems to be relatively independent of size or structure, at
least on the Sun.

The foregoing approach differs from the more traditional
one of equating the heating flux,

� ��� � � ��� , to the
Poynting flux crossing the photosphere �+� $ � ��� & � ��� .
Poynting flux is naturally related to the local magnetic
field strength � � and velocity )�� at the photosphere. The
majority of heating modelers have consequently cast their
results in these terms (Mandrini et al. (2000) presents a
very thorough review of the most common models and
the relationships they predict). This approach leads to no
ambiguity in the majority of theoretical models, which
use straight loops anchored to uniform photospheric field.
There is considerably more ambiguity, however, when
such scalings are applied to realistic magnetic regions.
The quiet Sun, for example, is composed of very small
magnetic elements of strong (500–1000 G) magnetic
field, distributed primarily inside network cells with a
filling factor of 1–2 % (Lin and Rimmele, 1999). Strict
application of the Poynting-flux argument demands that
the local value, � � � � � � � G, be used to compute the
coronal heating. When considering an average heating
flux, on the other hand, one might be justified in adopt-
ing the average unsigned flux density �� � � � � G. In our
approach of quantifying coronal reconnection rather than
Poynting flux we conclude that only network elements,
whose unsigned density is smaller by yet another order
of magnitude, could heat the corona. This turns out to be
the value consistent with the scaling law (6).

Observational evidence that coronal heating scales with
total magnetic flux rather than photospheric magnetic
field strength comes from the multi-variable study of
Fisher et al. (1998). A survey of 333 active regions
showed that the X-ray luminosity is more strongly corre-
lated with total flux than with photospheric field strength:
once the

�
dependence was removed there was no resid-

ual correlation with � � . Evidence which may contra-
dict this comes from recent studies constructing synthetic
coronal images from loop equilibria which use local heat-
ing functions depending on the various field-line quan-
tities (Schrijver et al., 2004; Lundquist, 2004). Good
matches to observed coronal images seem to require lo-
cal volumetric heating depending on the footpoint field
strength as � � � � �)& � . It is possible that this scaling is
in fact consistent with (6) or that there is a different scal-
ing for the overall heating than for its distribution within
the field.
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The Minimum Current Corona model offers one theoret-
ical framework from which we can deduce the value of
the reconnection heating constant. A domain composed
of field lines of length & , whose footpoints are moving
at ) � , will be recycled in a time � �!����� ��&
� ) � . If this
recycling occurs as reconnection triggered when the sep-
arator current exceeds a threshold, then the value of the
threshold should be related to the separator’s local mag-
netic shear, � � � & ��� , where ��� is the typical magnetic
field strength in the corona. Forming the ratio of these
two quantities we find � ����
 ��� �!����� � � � ) � . According to
the results of Pevtsov et al. (2003) the product is approx-
imately constant, ��� )�� � � ��� G cm/sec, and variations
in heating power arise from variations in the flux being
reconnected.

Examples we have considered suggest that the field
strength at the top of a coronal loop, where reconnection
seems to occur, is typically � � � � � G for a wide range
of coronal structures: it is roughly equal in the XBP of
1998 June 17 (at a height of � � Mm) and in active
region AR 9574 (at a height of � � � Mm). The same
field value value appears as a constant of proportionality,� � � $ � ) 	 & � � � G, in surveys of X-ray bright points such
as fig. 3. Furthermore, photospheric flux elements of all
sizes appear to move at approximately ) � � � � � m/sec,
typical of the network (the much faster granular veloc-
ities are not relevant to this discussion since they move
elements too small to influence coronal structure). We
propose that it is the product of coronal field and the pho-
tospheric velocity, � � ) � � � � � � � � � Amps/sec, which
underlies the observed heating constant. This explanation
resemble more traditional scalings from Poynting-flux ar-
guments, except for the critical distinction in the location
at which the field strength is estimated. Furthermore, it
is possible that a weak dependence on size, through

�
,

in either � � , the X-ray efficiency . or both, leads to the
additional

� � $  �� in the empirical fit of eq. (6).

Quasi-static heating models predict that the slow pho-
tospheric motion stores coronal magnetic energy, which
is then released by rapid reconnection. There seems to
be support in observations and theory for this scenario.
For example, the observations of reconnection between
AR9574 and AR9570 suggest that reconnection occurs
only after a significant period of stressing, and that en-
ergy released rapidly by reconnection is dissipated more
gradually within the post-reconnection flux. While this
sequence offers important insight into the nature of coro-
nal reconnection, and thus into coronal heating, it leaves
unanswered some of the key issues. What is the nature
of the fast reconnection which is inactive for long peri-
ods and then suddenly becomes a fast and effective trans-
ported of flux? Once the magnetic energy is released how
is it subsequently dissipated? Clearly we are not begin-
ning to understand coronal heating until we know how we
might answer these questions.

The author thanks Loren Acton and Alexei Pevtsov for
helpful comments during the preparation of the talk and
the manuscript. This work was supported by NASA grant
NAG5-10489.
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