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The properties of a ship’s wake follow entirely from the dispersion relation for deep-water waves. In
still water, a small-amplitude disturbance the the surface with horizontal wave number k = kxx̂ + kyŷ

oscillates at angular frequencies
ω(k) = ±

√

g|k| , (1)

where g is the gravitational acceleration, and the upper and lower signs give the two branches of the
dispersion relation necessary to produce a surface displacement with real values. The form of this relation
can be justified by dimensional analysis once it is recognized that the only relevant quantities are g and
the magnitude of the wave-vector itself.

We now place ourselves in the reference frame of a ship moving over the still water at velocity u.
In this frame, the water appears to be moving at velocity −u, and the dispersion relations are doppler
shifted to

ω±(k) = ±
√

g|k| − u · k . (2)

We learn a great deal about the problem by simply plotting the dispersion relation, in (kx, ky) space,
as done in fig. 1 after taking u = ux̂. From this we see that frequency is positive, ω+ > 0, for all
wave vectors kx < 0. There is a small region where contours enclose the origin k = 0; this occurs for
0 < ω < g/4u2, shown by the magenta contour. For frequencies outside this range, as well as for a
second branch within it, contours run roughly vertically in (kx, ky) space, with a leftward bulge near
ky = 0.

The group velocity of the ω+ branch

vg =
∂ω+

∂k
= 1

2

√

g|k| k

|k|2 − u (3)

is perpendicular to the contour shown in fig. 1 and is directed toward larger frequencies. For the roughly
vertical contours the group velocity is leftward — it is directed downstream. Only for the wave vectors
in the neighborhood of the origin for which 0 < ω+ < g/4u2, are up-stream group velocities possible.

From expression (2) it can be seen that the other branch of the dispersion relation has the property
ω−(k) = −ω+(−k). This branch is necessary to accommodate a real solution. To any complex wave,
∼ eik·x−iω+(k)t, we must be able to add the complex conjugate

[

eik·x−iω+(k)t
]∗

= e−ik·x+iω+(k)t = ei(−k)·x+iω+(k)t = ei(−k)·x−iω
−

(−k)t .

Since this is a wave satisfying the dispersion relation of the other branch, and with the opposite wave
vector, it is also a solution of the linearized equation and can therefore be added to yield the real
function we seek. Given that ω+(k) = −ω−(−k) we can show that the group velocities are the same at
corresponding wave vectors

∂ω+

∂k

∣
∣
∣
∣
k

=
∂ω−
∂k

∣
∣
∣
∣
−k

. (4)

The wake from a boat is stationary in the co-moving frame. Setting ω+ = 0 in eq. (2) provides an
expression for the blue curve in fig. 1

|k| =
g

(u · k̂)2
(5)

where k̂ = k/|k| is the direction of the wave vector. Placing this into eq. (3) gives the group velocity of
the stationary waves

vg(k̂) = 1
2 k̂(k̂ · u) − u , (6)

which are shown as violet arrows on the right of fig. 1. It is evident in the figure that these all point
approximately down stream, i.e. toward −u. When k̂ = x̂ the group velocity points exactly in this
direction: vg ‖ −x̂. Then as θk increases or decreases vg(k̂) makes an angle to the downstream direction.

Finally, as θk → ±π/2, i.e. k̂ → ±π/2, and thus k̂ · u → 0, the group velocity goes to vg → −u and it
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Figure 1: Contours of the dispersion relation ω+(kx, ky), given by the upper sign in eq. (2) for u = ux̂.
Left shows contours of positive (negative) values in red (green) against axes whose gave vectors are
scaled to g/u2. The curve ω = 0 is shown as a thick blue contour, and repeated in isolation on the
right. The magenta contour is the particular value ω = g/4u. A green arrow on the right version shows
a particular wave vector k, making an angle θk. Violet arrows show the group velocity, vg at a series of
representative points.

points directly downstream again. It thus seems that vg(k̂) sweeps over a range of downstream directions

as k̂ goes from ŷ → x̂ → −ŷ. This limited range of angles defines a wedge we know as the ship’s wake.
We have already evaluated the group velocities for wave vectors in three different direcitons

vg(ŷ) = − u = −u x̂ , vg(x̂) = − 1
2u x̂ , vg(x̂) = − u x̂ . (7)

To these we add the two at θk = ±π/4,

vg

(
1√
2
x̂ + 1√

2
ŷ
)

= u
(
− 3

4 x̂ + 1
4 ŷ

)
, vg

(
1√
2
x̂− 1√

2
ŷ
)

= u
(
− 3

4 x̂ − 1
4 ŷ

)
. (8)

Our five different wave-vector directions lead to group velocities arrayed in a square centered at −(3/4)u.
Motivated by this observation we re-arrange eq. (6) into the form

vg(k̂) = 1
4 [ 2k̂(k̂ · u) − u ]

︸ ︷︷ ︸

uê(k̂)

− 3
4u , (9)

leading to a new vector ê(k̂). It can be shown that the factor in square brackets has magnitude u = |u|
regardless of k̂, and thus that ê is a unit vector. Introducing u = u x̂, and k̂ · x̂ = cos θk, yields the
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explicit form

ê(k̂) = 2k̂(k̂ · x̂) − x̂ = (2 cos2 θk − 1)x̂ + 2 sin θk cos θk ŷ = − cos(2θk)x̂ + sin(2θk) ŷ , (10)

which clearly sweeps out one complete unit circle, clockwise, as θk goes from −π/2 to +π/2.

θ u

−u −3u/4

u/4
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w

Figure 2: The locus of group velocity vectors, vg(k), from a ship moving at velocity u.

Based on the discussion above we can read eq. (9) geometrically in the manner illustrated in fig. 2.
The group velocities of stationary waves lie on a circle of radius u/4 centered at −3u/4. It is evident
from this geometric construction that energy moves away from the ship in a restricted range of sternward

directions, even as the waves vectors themselves span all possible forward directions. Constructing a
triangle using the radius and tangent (see fig. 2) we find that the circle subtends a half-angle

θw = sin−1(1/3) = 19.47◦ , (11)

behind the ship. The wake is therefore a wedge making a complete angle 2θw = 39◦ behind the ship
independent of speed.

Which wave vector moves at the limiting group velocity making the angle θw = 19.47◦? To answer
this question we consider a similar triangle using a unit circle, as shown in fig. 3. From this we see that

û · ê(k̂cr) = cosα = sin θw = 1
3 . (12)

Using eq. (10) in this shows that 2θk = π − α = π/2 − θw and thus that θk = 45◦ − 19.47◦/2 = 35.26◦.
The relation 2θk = π/2 − θw also means that the wave fronts, perpendicular to k̂, make the same angle
θk = 35.26◦ with the wake itself, as shown in fig. 3. Finally we can use these expressions to provide

û · k̂ = cos θk =
√

1
2 [cos(2θk) + 1] =

√
1
2 [sin(θw) + 1] =

√

2

3
. (13)
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Figure 3: The geometric construction used to find the limiting wave vector, kcr.

Using eq. (13) in the expression (5) gives the limiting wave vector kcr = 3g/2u2. The crests of this
wave are separated by λcr = 4πu2/3g. The crests along the edge of the wake are therefore separated by

ℓcr =
λcr

sin(θk)
=

4πu2

√
3g

= 7.25
u2

g
. (14)

The crest spacing depends on the ship’s speed even while the angle of the wake does not.
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Kelvin’s method

In a general super-position of surface waves each wave vector appears with a complex amplitude, A(k),
depending on, among other things, the shape of the ship’s hull

z(x, t) =

∫

A(k) eik·x e−iω(k)t dk , (15)

where x = (x, y) is a position on the surface. This can be restricted this to stationary waves, ω = 0,
using expression (5) to write k = k̂g/(u · k̂)2.

z(r, φ) =

∫

A(θk) exp

[

ig k̂ · x
(u · k̂)2

]

dθk =

∫

A(θk) exp
[

i
rg

u2
ψ(φ, θk)

]

dθk , (16)

where

ψ(φ, θk) =
k̂ · r̂

(û · k̂)2
=

cos(φ− θk)

cos2 θk

, (17)

after taking û = x̂. The integral runs from θk = −π/2 to π/2 using wave vectors satisfying ω+ = 0 —
i.e. the blue curve in fig. 1. It then completes the circle from θk = π/2 to 3π/2 using stationary waves
from the other branch, ω− = 0. The magnitudes of both branches satisfy eq. (5), so the distinction can
be dropped from the integral in eq. (16).

In the limit rg/u2 ≫ 1 the exponential factor varies extremely rapidly and will average away contri-
butions to z(r, φ) except those by wave vectors with “stationary phase”

∂ψ

∂θk

=
sin(φ− θk)

cos2 θk

+ 2
cos(φ− θk) sin θk

cos3 θk

= 0 . (18)

The requirement for stationary phase thereby associates with any spatial angle φ several wave-vector
directions θk. The two are related through

tan(θk − φ) = 2 tan θk , (19)

from a manipulation of eq. (18).
Equation (19) is solved by setting φ = θg the angle of the group velocity, vg(k̂) in eq. (6). To see

this take the dot product and cross product of this equation with k̂. The result is

vg · k̂ = vg cos(θk − θg) = − 1
2u · k̂ = − 1

2u cos(θk) (20)

vg × k̂ = vg sin(θk − θg)ẑ = −u× k̂ = −u sin(θk)ẑ . (21)

Taking a simple ratio of these expressions returns eq. (19) immediately. There is, moreover, a 180◦

ambiguity in the choice of φ satisfying eq. (19), stemming from the periodicity of tan. Since a general
superposition of stationary waves is acausal it might be arranged to produce a disturbance in front of
a ship as easily as behind it. This ambiguity is absent from the group velocity, which is confined to
directions behind the ship.

Equation (19) can be solved to yield a closed form expression for the spatial direction for which a
particular wave vector direction is stationary

φ(θk) = θk − tan−1 [2 tan θk] . (22)

From the foregoing discussion we see that appropriate branch of tan−1 is the one centered on −180◦ in
order to produce the graph shown in fig. 4. The plot shows that φ ranges within the wedge of angles
180◦ ± θw. It achieves these extrema at θk = ±35.26◦ and ±144.74◦ (squares). Outside this wedge of
angles there is no point in the integral, eq. (16), with stationary phase. This means that outside the
wake the different contributions mostly average away at large distances, r ≫ u2/g.
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Figure 4: Plot of φ(θk) from eq. (4).

For a given value of φ between extremes (dashed line in fig. 4) the functional relationship, (22),
can be inverted to yield four different wave vector angles (triangles): θt

k(φ) and θd
k(φ) and their −k̂

counterparts θt
k(φ) − 180◦ and θd

k(φ) − 180◦. The integral in eq. (16) can be approximated as a sum
over contributions from these four wave vectors where the integrand does not average away. We may
also note that since z(x, y) is real A(θk − 180◦) = A∗(θk). Furthermore, from eq. (17) we find that
ψ(φ, θk − 180◦) = −ψ(φ, θk). This allows us to write the wake as a sum over two wave vectors

z(r, φ) ≃ 2Re
{
A(θt

k) exp[i(rg/u2)ψ(φ, θt
k)]/Ct

}
+ 2Re

{
A(θd

k) exp[i(rg/u2)ψ(φ, θd
k)]/Cd

}
,

where Ct and Cd come from the stationary phase integral.
The expression is simplified, and clarified, if we assume that A/C = Ã is purely real

z(r, φ) ∼ 2Ãt cos
[
(rg/u2)ψ(φ, θt

k)
]

+ 2Ãd cos
[
(rg/u2)ψ(φ, θd

k)
]
. (23)

In the far field, r ≫ u2/g, the cosine factors will vary rapidly, while the amplitudes Ã vary more slowly.
Each contribution consists of oscillations which crest where the argument of its cosine is an integer
multiple of 2π. The crests from each component thus form a series of curves

r(φ) = 2πn
u2

g ψ[φ, θk(φ)]
= 2πn

u2

g

cos2[θk(φ)]

cos[θk(φ) − φ]
, (24)

after using eq. (17). The two inverse branches, θt
k and θd

k, yield two different crest curves called transverse
(t) and divergent (d), plotted as solid curves in figure 5. Recall that both inverses θk(φ) are undefined
for arguments outside the wake, so the crest curves do not extend there.

The inverses for φ = 180◦ are θt
k(180◦) = 0 and θd

k(180◦) = 90◦, yielding crests at rt = −2πnu2/g
and rd = 0, respectively. In other words the divergent crests do not cross behind the ship while the
transverse crests do. Both crest curves meet at the edge of the wake, φ = 180◦ − θw, where θt

k = θd
k =

θk = cos−1(
√

2/3) from eq. (13). Using the fact that 2θk = 90◦ − θw we find

θk − φ = θk + θw − 180◦ = − 90◦ − θk .

We can use this to write the crest locations in the form

r(180◦ − θw) = − 2πn
u2

g

cos2(θk)

sin(θk)
= − 2πn

u2

g

(2/3)

1/
√

3
= − 4πu2

√
3g

n = − 7.25
u2

g
n , (25)

the same spacing derived in eq. (14).
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Figure 5: The curves of transverse and divergent crests.
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