

Active region emergence and its effect on the solar corona

Dana Longcope

Montana State University, Bozeman, MT

Thanks

- George Fisher (UCB)
- Alex Pevtsov (NSO)

Dec. 2, 2008 Bangalore, India

* Presently IIA

- Isaac Klapper
- B. Ravindra*

MSU

- Brian Welsch
 - § Presently UCB

Active regions: where they come from

NIVERSITY

Babcock 1961

Dec. 2, 2008 Bangalore, India

How do these emerging flux tubes affect the corona?

Outline

Dec. 2, 2008 Bangalore, India

- 1. Dynamics of emergence
- 2. Twist (helicity) in emerging tubes
- Transport of helicity into the corona by emerging tubes

- Isolated tube, pressure-confined, "thin" $\clubsuit \rightarrow$ a << H_p
- Axis of tube: space curve **x**(s,t)
- Dynamical equations: Spruit 1981, Choudhuri & Gilman 1987

Model evolution of AR tubes

- Initialize tube at base of CZ
- Follow evolution of emerging tube thin FT eqns.
- Predict configuration of observed AR

Fan *et al.* 1994

Dec. 2, 2008 Bangalore, India

D'Silva & Choudhuri 1993

A Rising Flux Tube

Deflection of rising tube by Coriolis effect \rightarrow tilted pair of spots

Dec. 2, 2008 Bangalore, India

Flux Tube Twist

Flux tubes must be twisted in order to rise (Parker 1979)

twisted

Abbett et al. 2000

untwisted

... and AR fields are twisted

(courtesy T. Magara & Hinode)

ы

(from Nakagawa et al. 1971)

Evidence that flux tubes emerge already twisted: Flux (Φ) and current increase together (Leka *et al.* 1996)

Bangalore, India

How twisted are the tubes?

Dec. 2, 2008 Bangalore, India α_{best} introduced by Pevtsov, Canfield & Metcalf (1995)

- calc $B_{\perp}{}^{(\alpha)}$ by extrapolating B_z w/ fixed value of α
- vary α until $\mathbf{B}_{\perp}^{(\alpha)}$ best matches observed \mathbf{B}_{\perp} i.e. minimize

$$\sum_{i,j} |\mathbf{B}_{\perp}(i,j) - \mathbf{B}_{\perp}^{(\alpha)}(i,j)|^2$$

-10 apon, 10° m' Linear trend removed (from Longcope, Fisher & Pevtsov 1998)

Dec. 2, 2008 Bangalore, India

20

Numba

Plasma **spins** about axis at rate

$$\omega(s,t)$$
 "=" $d\theta/dt$

 $v_{\theta} = \omega r$

Twist in flux tubes

Evolution of twist & spin

$$\frac{d\omega}{dt} = \mathbf{v}_{A}^{2} \frac{\partial q}{\partial s} - \frac{2}{a} \frac{da}{dt}$$
$$\frac{dq}{dt} = \frac{\partial \omega}{\partial s} - \left(\hat{\mathbf{s}} \cdot \frac{\partial \mathbf{v}}{\partial s}\right) q + (\hat{\mathbf{s}} \times \mathbf{k}) \cdot \frac{\partial \mathbf{v}}{\partial s}$$

Dec. 2, 2008 Bangalore, India

(Longcope & Klapper 1997)

Axis of tube:

S T A T E UNIVERSITY

Dynamics of twist

Writhe from Turbulence: The Σ -effect (Longcope, Fisher & Pevtsov 1998)

Spectrum of kinetic helicity

NIVERSITY

$$\langle \mathbf{v}^{e} \cdot \nabla \times \mathbf{v}^{e} \rangle = -\frac{1}{3} \tau_{c} \int F(k) dk$$

 $\Sigma \approx (\hat{\mathbf{s}} \times \mathbf{k}) \cdot \frac{\partial \mathbf{v}^{e}}{\partial s}$ Twist source

Averaging over turbulence:

 $\langle \Sigma \rangle \approx -\frac{1}{5} \tau_c \int k^2 F(k) dk$

Variance of twist source: $\langle \Sigma^2 \rangle \approx |\mathbf{k}|^2 \int k^2 E(k) dk \gg \langle \Sigma \rangle^2$

Dec. 2, 2008 Bangalore, India

Σ -effect vs. α -effect

 $\left\langle \Sigma \right\rangle \approx -\frac{1}{5} \tau_c \int k^2 F(k) dk$ Spectrum of kinetic helicity Compare to α -effect: $\alpha \approx -\left\langle \mathbf{v}^e \cdot \nabla \times \mathbf{v}^e \right\rangle = \frac{1}{3} \tau_c \int F(k) dk$

Dec. 2, 2008 Bangalore, India

Cause of the observed twis

Observed properties

 \blacksquare Twist in CZ flux tube

- ✓ LH twist in North
- $\checkmark <\alpha > ~ 3 \times 10^{-9} \text{ m}^{-1}$
- \checkmark 25% violation of trend
- $\checkmark \Delta \alpha \sim 10^{-8} \text{ m}^{-1}$
- \square $\Delta \alpha$ indep. of latitude

SITY Writhe from CZ turbulence: The 2-effect

- Kinetic helicity: • RH writhe in North
- $<\alpha> \sim 3 \times 10^{-9} \text{ m}^{-1}$
- Fluctuates (turbulence)
- Level indep. of latitude
- $\Delta \alpha \sim 10^{-8} \text{ m}^{-1}$

Twist: Photosphere vs. Corona

Force-free-field w/ constant- α

Bangalore, India

Coupling flux tube to corona

Dec. 2, 2008 Bangalore, India

Coupling flux tube to corona

Imbalanced torque (shunted current) -> spin

Flux tube twist -> sunspot rotation ->

Summarising these results, we have a mean rotational movement of 0.35 km. per sec., and a radial motion of about 2 km. per sec. Combining them, we get a spiral or catharine-wheel movement opposite in the two hemispheres. This is represented graphically in the appended diagram (fig. 2), which shows the directions of the stream-lines in a northern and in a southern spot.

Evershed 1910

240

300

360

180

Angular spacing (degrees)

a

60

120

Twist Creates Spin

<u>movie</u>

(Courtesy D. Alexander)

Dec. 2, 2008 Bangalore, India

Dec. 2, 2008 Bangalore, India

Spin from Emergence

- Twist propagates into corona
- Twist-rarefaction waves propagates inward to CZ
 Characteristic

time-scale for adjustment:

$$d/v_A \sim 1 day$$

Dec. 2, 2008 Bangalore, India

Spin from Emergence

Observation: Pevtsov, Maleev & Longcope 2003

Fit Model to Data

Bangalore, India

Spin from Emergence

Observation: Pevtsov, Maleev & Longcope 2003

Dec. 2, 2008 Bangalore, India

Measured Velocity

B_z measured: LOS mg U measured: LCT of B_z A₀ extrapolated /

$\frac{dH_R}{dt} = -2\int_{z=0}^{z=0} \left(\mathbf{U} \cdot \mathbf{A}_0\right) B_z \, ds$

= +3 × 10⁴⁰ Mx²/day $= \Phi^2 10^{-2}/day$

Dec. 2, 2008 Bangalore, India

(Chae 2001)

Q

20

40

1997-10-09

Bangalore, India

80

60

Helicity Injection

Long term helicity injection

AR	Δt	$\Delta H/\Phi^2$	<dh dt=""></dh>	ref
	(hrs)		(10 ⁻² day ⁻¹)	
8011	40	0.003	0.18	Chae (2001)
8100	120	0.02	0.4	Kusano et al. (2002)
8668	50	0.03	1.4	Chae et al. (2001)
9165	80	0.2	6.0	Nindos & Zhang (2002)
10365	120	0.05	1.0	Chae, Moon & Park (2004)
10696	132	0.02	0.4	Lim et al. (2007)

Dec. 2, 2008 (from van Driel-Gesztelyi, Demoulin & Mandrini, 2003) Bangalore, India

Helicity Flux in ARs $\frac{dH}{dt} = \Omega \Phi^2 = \frac{\omega}{2\pi} \Phi^2$

Differential rotation:

- Th. (DeVore 2000): $\Omega \sim 3 \times 10^{-3}/day$

- Obs. (Demoulin *et al* 2002) Ω ~ 3 X 10⁻⁴
- Proper motions: (observations)
 - LCT (van Driel-Gesztelyi et al. 2003)
 - Sunspot rotation (Brown et al 2003)

Ω ~ 10⁻² Ω ~ 10⁻¹

Summary

- ARs created by emergence of flux tubes
- Tubes consist of twisted flux -- twisted by turbulence during rising (Σ -effect)
- Helicity of twist propagates into corona
- Observed proper motions (rotating sunspots) consistent with twist propagation