Energetics of Reconnection: A Comparison of Steady and Transient Models in 1, 2 and 3 Dimensions

Dana LongcopeMSUSilvina GuidoniMSUMark LintonNRL

Thanks: Terry Forbes

Classical Petschek

Petschek 1964 Vasyliunas 1975 Soward & Priest 1982

June 18, 2009

Boulder SPD

* line \perp to 2d plane

Petschek & Thorne 1967 Soward 1982 Skender et al. 2003

- CS between field @ $\Delta \theta$ (include "guide field" B_{z})
- steady model
- Recon'n @ X-point* on CS
- → 2 shocks (co-planarity):
- Intermediate shock (RD) **|B**| unchanged
 - **A** KE in bulk flow & v₇
 - **Slow shock (SMS)**
 - **|B**| reduced slightly
 - $v_7 \rightarrow 0$ (:: KE \checkmark)
 - thermal energy

* line \perp to 2d plane

slow shock angle $\sim \beta^{1/2} \times IS$ angle

In skewed ($\Delta\theta$ < 120°) low β reconnection:

- Magnetic field strength decreases only slightly
 Q: what is the source of energy?
 A: field lines are shortened (rather than weakened)
- SMSs mostly stop converging flows

(rather than weakening field, à la switch-off shock)

~ gas dynamic shocks (M ~ $\beta^{-1/2} >> 1$)

Heating occurs only in small central region
 Most released energy converted to KE

3D transient

Linton & Longcope 2006 Longope, Guidoni & Linton 2009

- CS between field @ $\Delta \theta$ (include "guide field" B_z)
- Recon'n @ patch on CS
- creates detached flux tubes
- bend →non-equilibrium
- evolve as thin flux tubes
- "pull through" CS
- |B| fixed by external layers unchanged by reconnection
- Riemann problem \rightarrow 2 shocks
 - Bends (IS) move @ v_{A}
 - gas dynamic shocks (GDS) in straight section -
 - disconnected from recon'n

Summary

Reconnecting field lines w/ $\Delta \theta < 180^{\circ}$

common to steady/transient 1D,2D,3D models:

- Releases energy by shortening field lines (more than annihilating field)
- Most properties: indep. of reconnection rate
- Most energy
 → kinetic energy of retracting flux
- shortening \rightarrow flows converging at $\sim v_A$
- Stopped in shocks (SMSs/GDS) which thermalize some kinetic energy (little |B|)
- creates small ($\sim \beta^{1/2}$) hot central region