Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Montana State University Solar Physics REU Program

August 6, 2013

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

ntroduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

References

・ロト ・ 聞 ト ・ 画 ト ・ 画 ・ うへの

Introduction

- Building off of previous work done by Dr. Longcope and others ([2] [3] [4]).
- Original model [3] followed the dynamics of a A-shaped post-reconnection flux tube, with downward flows.
- My project was to evaluate different sets of initial conditions with upward flows.
- One potential application was to see how this matched Type-II spicules [1].

Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusior

Background: Flux Tubes

- Flux tubes describe when magnetic field lines occur in field-free environments (like the sun's corona).
- Plasma conforms to these tubes and travels along them as a propagating wave.
- When the waves are much longer than the width of the tube, we get a nice simplification of their dynamics called the "thin flux tube" model. This allows us to use the equations of MHD to approximate their motion.

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusior

Reconnection

- Flux tubes in the upper regions of the sun's atmosphere can become crossed.
- When this occurs, they can reconnect:

- These then retract at the Alfvén speed.
- My project was to see what happens next.

Joshua R. Mirth Advisor: Dr. Dana Longcope

ntroduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Numerical Model

Initial Conditions:

- One pre-reconnection tube is a large, low-density, high-temperature coronal flux tube approximate by a vertical line.
- The other is a low-lying, high-density, lower-temperature tube.
- We ignore gravitational forces and assume a low β (\ll 1).

This gives the following equation of motion[4] which we solve using a Lagrangian numerical method (PREFT):

$$\rho \frac{d\vec{\mathbf{v}}}{dt} = -\hat{\mathbf{b}} \frac{\partial \rho}{\partial I} + \frac{B^2}{4\pi} \frac{\partial \hat{\mathbf{b}}}{\partial I} - \frac{1}{4\pi} \nabla_{\perp} B^2 + B \frac{\partial}{\partial I} \left(\frac{\mu}{B} \hat{\mathbf{b}} \hat{\mathbf{b}} \cdot \frac{\partial \vec{\mathbf{v}}}{\partial I} \right)$$

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

ntroduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

References

もちゃん 聞い ふかく ふやく 西マ

Analytic Solution

Derivation:

- Assume we can divide the tube into five regions:
 - The two endpoints
 - The center
 - A point between each end and the center where there is a shock.
- Ignore thermal conduction.
- Numerical model is computationally intensive. This gives us a closed-form solution.

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Example Run

Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Pressure

Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Temperature

Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Results: Parameter Studies

- Interested in what causes the maximum upflow velocities.
- Conducted runs with angles ranging from 10 to 135 degrees and density ratios from 0.1 to 100
- Also evaluated temperature, pressure, and some other parameters.

Dynamics of ost-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Velocity

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Result

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

References

もちゃん 聞い ふぼうえん (中)・

Pressure

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Result

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Temperature

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Result

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Constant Pressure or Temperature?

- Original code fixed the temperature ratio between the two connecting tubes.
- Modified to hold pressure constant and allow temperature to vary.
- ▶ Not much changed.

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Magnetic Field

- \triangleright Images shows B=100, 200, and 300.
- Alfvén speed changes when B does. Graph compensates for that.
- Magnitude of different quantities tend to be proportional to changes in magnetic field.
- Stronger fields also cause jagged lines...

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusior

Spikes

- Runs were cutting out, returning -Nan for all variables after some amount of time.
- Stronger fields caused it to happen sooner.
- Looks like a mathematical error—information outrunning the grid.
- Smoothing out the code didn't solve it.

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

Magnetic β

- $\triangleright \ \beta = \frac{p}{B^2/4\pi}$
- Tells us the relative importance of tension versus pressure forces.
- ▷ β > 2 means pressure dominates.
- \succ code assumes $\beta \ll 1$.
- Here's the issue:

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Result

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

References

・ロット 御 マ キョット キョン しょうしょう

Not a numerics problem, actually a physical issue! The assumptions behind our equations quickly become invalid at extreme angles and densities.

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Result

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion

References

・ロット 4回ッ 4回ット 4回ット 4日 2000

Conclusions

What did we learn?

- We now understand the dependence of this model upon various parameters much better.
- We found some physical limits on when the code is useful.

Does this tell us anything about spicules?

- I have no idea.
- It does give a method of launching heating material into the corona.
- > Further work should be done here.

Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion References

- De Pontieu et. al. 2007, PASJ, 59, S655-S662
- 🖥 Guidoni, S.E., & Longcope, D.W. 2010, ApJ, 718, 1476
- Longcope, D.W., Guidoni, S.E., & Linton, M.G. 2009, ApJ, 690, L18
- Longcope, D.W., & Guidoni, S.E. 2011, ApJ, 740, 73

pst-Reconnection Magnetic Flux Tubes

Joshua R. Mirth Advisor: Dr. Dana Longcope

Introduction

Background

Flux Tubes Reconnection Numerical Model Analytic Solution Example Run

Results

Parameter Studies Constant Pressure or Temperature? Magnetic Field Strength

Conclusion