

An Observational Study of the Formation and Evolution of Sunspots

a dissertation by Sarah Jaeggli¹ advisors Haosheng Lin¹ & Han Uitenbroek²

NSO

'Institute for Astronomy, University of Hawai'i ²National Solar Observatory

A Problem with Sunspot MHSE

Sunspots are stable and are considered to be in equilibrium on dynamical timescales

numerous other studies:

Gurman & House (1981), Kopp & Rabin (1993), Balthasar & Schmidt (1993), Lites et al. (1993), Matrinez Pillet & Vazquez (1993), Solanki et al. (1993), Stanchfield et al. (1997), Westendorp Plaza et al. (2001), Livingston (2002), Penn et al. (2002, 2003a, 2003b), Mathew et al. (2004) For a circularly symmetric sunspot in equilibrium:

$$P_{qs}(z) = n_{qs}(z)kT_{qs}(z)$$

= $n_s(r,z)kT_s(r,z) + \frac{1}{8\pi}(B_z^2(r,z) + F_c(r,z))$

where

$$F_c(r,z) = 2 \int_r^a B_z(r',z) \ \frac{\partial B_r(r',z)}{\partial z} \ dr'$$

Assuming:

(I) small curvature force, Fc

(2) small changes in (z) height of observation due to RT effects

(3) constant density, n

We get a linear thermal-magnetic pressure relation:

$$B^2(r,z) \propto T_{qs}(z) - T_s(r,z)$$

A Problem with Sunspot MHSE

Sunspots are stable and are considered to be in equilibrium on dynamical timescales

numerous other studies: Gurman & House (1981), Kopp & Rabin (1993), Balthasar & Schmidt (1993), Lites et al. (1993), Matrinez Pillet & Vazquez (1993), Solanki et al. (1993), Stanchfield et al. (1997), Westendorp Plaza et al. (2001), Livingston (2002), Penn et al. (2002, 2003a, 2003b), Mathew et al. (2004)

$$B^2(r,z) \propto T_{qs}(z) - T_s(r,z)$$

A Possible Solution

- In the umbra, Fc and effects of RT should be small and cannot explain isothermal increase in B
- BUT the assumption that number density is constant is not valid
 - Molecule formation
 - decrease in number density
 - release of dissociation energy
 - increase in heat capacity
 - H₂
 - Detections in the UV chromosphere
 - In the photosphere, from umbral models 5%

A Possible Solution

- In the umbra, Fc and effects of RT should be small and cannot explain isothermal increase in B
- BUT the assumption that number density is constant is not valid
 - Molecule formation
 - decrease in number density
 - release of dissociation energy
 - increase in heat capacity
 - H₂
 - Detections in the UV chromosphere
 - In the photosphere, from umbral models 5%

SUMER spectrum from Innes (2008) fig. I

A Possible Solution

- In the umbra, Fc and effects of RT should be small and cannot explain isothermal increase in B
- BUT the assumption that number density is constant is not valid
 - Molecule formation

decrease in number density

- release of dissociation energy
- increase in heat capacity
- H₂
 - Detections in the UV chromosphere
 - In the photosphere, from umbral models 5%

Model M (Teff~4000 K) from Maltby et al. (1986) fig. 9

Sunspot Survey

Measure H_2

- Direct detection is not easy
 - UV lines at chromospheric heights (and SUMER is no more)
 - Ro-vibrational lines in IR undetected
- Must use proxy molecule
 - Hydroxide (OH)
 - Similar dissociation energy (OH: 4.39 eV, H₂: 4.48 eV)
 - Falls within 15650 Å band

Characterization of B and T

• Spectropolarimetry of high B-sensitivity lines @ Fe I 15650 Å g=3, I.7

Establish Evolutionary Effects

- Survey
- 65 observations of 23 sunspots and pores over 1.5 years

Facility IR Spectropolarimeter

Telescope: DST @ NSO/Sacramento Peak

Features: Diffraction limited with AO Dual beam 4-slits for high cadence (20 min.) High and low resolution modes

Wavelengths: Fe I 6302 / Fe I 15650 Å or Fe I 6302 / Si I, He I 10830 Å

Runs concurrently with: IBIS Ca II 8542 Å, Hα, G-band camera

Now available for general use! For more information see: http:/kopiko.ifa.hawaii.edu/firs

Fe I, OH @ 15650 Å FIRS Infrared channel

Fe I, OH @ 15650 Å

Inversion "2CMO"

Magnetic Component

- f magnetic filling factor
- B magnetic field strength
- γ magnetic field inclination
- χ magnetic field azimuth
- B₀ source function
- B_1 source function gradient
- λ wavelength
- $\Delta\lambda$ doppler width
 - a damping parameter
- η_0 line to continuum absorption ration

Non-Magnetic Component

- λs wavelength of stray light component
- I-f stray light filling factor

2 Component Milne-Eddington Inversion

Magnetic component

full accounting for magneto-optical effect and damping wings using Voigt and Faraday-Voigt to fit Fe I Stokes profiles

Non-magnetic component

averaged quiet sun intensity profile

Inversion "2CMO"

I-f stray light filling factor

Inversion "2CMO"

Atmospheres

- Kurucz models 4000-7000 K
- Phoenix models 2600-3900 K

Generate spectral diagnostics

- Rybiki-Hummer (RH) radiative transfer and chemical equilibrium code
 - equilibrium molecular abundances
 - spectral synthesis

Atmospheres

- Kurucz models 4
- Phoenix models

Generate spectral di

- Rybiki-Hummer (transfer and cher equilibrium code
 - equilibrium molecular abundances
 - spectral synthesis

spectral synthesis

Survey Results

• Data inverted and model applied:

• B

- stray light corrected continuum T
- OH EqW(also stray light corrected) / H₂ fraction
- Results from 6 examples from the survey

NOAA 11049, 2010-02-19

NOAA 11046, 2010-02-13

NOAA 11130, 2010-12-02

NOAA 11101, 2010-09-02

NOAA 11035, 2009-12-17

NOAA 11131, 2010-12-06

Survey Results

OH, H₂ vs.T

- good agreement of measured OH w/ synthetic spectra from models
- B^2 vs.T
 - Upturns
 - increase begins around 6000 K
 - spots with umbral fields > 2500 G, $H_2 > 1\%$
 - steeper relations seen in mid-sized/strength spots
 - in quiescent/decay phase
 - No upturn
 - weak fields, little or no H_2 (< 0.5%)

The Role of H₂

more rapid intensification of B field H_2 "runaway" formation

The Role of H₂

The Role of H₂

Conclusions

- Formation of H_2 can explain the thermalmagnetic relation seen in larger sunspots
 - Upturns coincide with H₂ "turn-on"
- Other implications for sunspot science
 - increased heat capacity in sunspots
 - models must include multi-component gas

Future Work

- Characterization of the non-linearity due to RT effects and curvature force
 - Using 6302/15650 Å sunspot survey
 - In-depth comparison of observations and sunspot MHD models

Thank You!

NSO, for continuing mentorship and financial support.

The FIRS project was supported under NSF MRI ATM-0421582

