

FIRS: A New Instrument for Multi-Wavelength Spectropolarimetry

Sarah Jaeggli, Haosheng Lin

Institute for Astronomy, University of Hawai'i

FIRS is supported by the National Science Foundation Major Research Program, Award No. ATM-0421582.

Science!

- Sunspot Structure
 - Magnetohydrostatic Equilibrium, Molecule Formation, and the Evolution of Sunspots (my thesis)
 - Canopies
 - Penumbra
- Photospheric-Chromospheric-Coronal Connection
 - Energy Transfer/Heating/Cooling

- Inversion of simultaneous 630/1565 nm observations using TIP, POLIS, and SIR:
 - of a sunspot: Cabrera Solana et al. (2006)
 - of the internetwork: Martinez Gonzalez et al. (2008)

Multi-Spectral: Multi-Height Diagnostics

Line [Å]	Species	Landé g	Formation Height
6302	Fe I	1.667, 2.5	mid-photosphere
8542	Ca II	1.1	low chromosphere
10827	Si I	1.5	photosphere
10830	He I	2.0, 1.75, 1.25	high chromosphere
15650	Fe I	3, 1.53	low photosphere

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics

High Spectral Resolution: Detailed Physics

Multi-Spectral: Multi-Height Diagnostics

High Cadence: Dynamics

High Spectral Resolution: Detailed Physics

High Spatial Resolution: Structure Detail

Instrument Requirements with FIRS

Multi-Spectral: Multi-Height Diagnostics

Dual-arm spectrograph for simultaneous visible and infrared observations

Beam splitter to share the beam with IBIS

		Line [Å]	Species	Landé g	Formation Height
	*	* 6302	Fe I	1.667, 2.5	mid-photosphere
with IBIS	*	* *8542	Ca II	1.1	low chromosphere
k	*	10827	Si I	1.5	photosphere
	*	10830	He I	2.0, 1.75, 1.25	upper chromosphere/low corona1500-2000 km
		<mark>*</mark> 15650	Fe l	3, 1.53	low photosphere

Multi-Spectral: Multi-Height Diagnostics Dual-arm spectrograph for simultaneous visible and infrared observations Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Multi-Spectral: Multi-Height Diagnostics

Dual-arm spectrograph for simultaneous visible and infrared observations

Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Multi-Spectral: Multi-Height Diagnostics Dual-arm spectrograph for simultaneous visible and infrared observations Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Multi-Spectral: Multi-Height Diagnostics Dual-arm spectrograph for simultaneous visible and infrared observations Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Building a Scan with 4 Slits

Multi-Spectral: Multi-Height Diagnostics Dual-arm spectrograph for simultaneous visible and infrared observations Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Multi-Spectral: Multi-Height Diagnostics Dual-arm spectrograph for simultaneous visible and infrared observations Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Increased throughput with 4 slits

High Spectral Resolution: Detailed Physics

Large IR grating with steep blaze

300,000 for the IR, 600,000 for the visible (3pm measured with HeNe ~200,000)

Multi-Spectral: Multi-Height Diagnostics

Dual-arm spectrograph for simultaneous visible and infrared observations

Beam splitter to share the beam with IBIS

High Cadence: Dynamics

Increased throughput with 4 slits

High Spectral Resolution: Detailed Physics

Large IR grating with steep blaze

300,000 for the IR, 600,000 for the visible (3pm measured with HeNe ~200,000)

High Spatial Resolution: Structure Detail

Diffraction-limited with HOAO

f/36 and f/108 feed optics for high and low-res modes

FIRS Properties

* Assuming use of 40 μm slit ** S/N ~ 10³

Property	FIRS f/36*	FIRS f/108*	Hinode SOT/SP
Telescope	76.2 cm Solar Tower		50 cm Aplanatic Gregorian
Rayleigh limit @ 6302	0.21"	•••	0.32"
Rayleigh limit @ 10830	0.36"		
Rayleigh limit @ 15648	0.52"		•••
Field	174" x 75"	58" × 25"	160" (320" max) x 151"
Vis Spatial Sampling	0.30" x 0.08"/pix	0.10" x 0.03"/pix	0.15" x 0.16"/pix
IR Spatial Sampling	0.30" x 0.15"/pix	0.10" x 0.05"/pix	
Nominal Scan Time**	20 min		83 min
6302 Spectral Resolution (Sampling)	0.03 (0.01) Å		0.03 (0.02) Å
10830 Spectral Resolution (Sampling)	(0.04) Å		
15648 Spectral Resolution (Sampling)	0.17 (0.05) Å		

Current Status

For the Future

FIRS standard configuration is complete!

- Observer training July, September 2009
- Released for general use 1st quarter 2010

Extended Capabilities:

- Additional visible and IR detectors for simultaneous 6302-8542-10830-15650
- Maybe super-achromatic dualwaveplate modulator for synchronized exposures
- New pair of Wollaston prisms for smaller beam deviation and larger FOV
- More narrow-band filters for extended wavelength coverage

FIRS Data

MDI Magnetogram 7-Jul-2009 20:48:00

0

X (arcsecs)

500

actually, 2009-07-06 would be better, Solis, Hinode, FIRS are close ~13:15 UT

FIRS

A

1000

2009-07-07 14:31:00 UT

2009-07-07 18:02:00 UT

[arcsec]

20

Correction of Polarization Cross-talk

Kuhn et al. (1994) assumes $I \leftrightarrow QU$ and $Q \leftrightarrow U$ are small, and cross-talk is a combination of only linear terms.

Solve first for antisymmetric V through regression:

$$V = V_o - aQ_o - bU_o$$

Then solve for symmetric Q and U:

$$Q = Q_o - cV$$
$$U = U_o - dV$$

Resulting coefficients of the inverse Muller matrix:

$$M^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 + ac & ad & -a\\ 0 & bc & 1 + bd & -b\\ 0 & -c & -d & 1 \end{pmatrix}$$

we use Matt's routine :)

FIRS

and the second second

FIRS

A Leve

Hinode scan started 2009-07-07 14:03:00 UT

Hinode scan started 2009-07-07 14:03:00 UT

Instrumental Polarization Port 4 (cont.)

- Obtain independent polarization calibration data with the Port 4 LP and WP for our observations
- Can remove everything downstream from port 4 to get the pointing-dependent telescope model

Inversion of Data

- Haosheng's gaussian fitting routine
 - Originally written for simple inversion of Fe I 1565
 - Does not (yet) account for the magneto-optical effect, 630 nm version for FIRS and Hinode data is forthcoming
- Merlin
 - Used on Hinode data at CASC/HAO
 - Not yet working with FIRS 630, needs some work (help?)
 - Hoping for improvements in new software version

Test: FIRS 1565/HL vs. Same Spectrally Rebinned x2

Summary

FIRS works! Let's use it! What to do next:

- Quantify data quality differences between FIRS and Hinode Fe I 630
- Resolve inversion technique differences between Merlin and HL's code

