
Modeling the MOSES Wavefront Error

Charles C. Kankelborg

July 16, 2009

Abstract

This paper describes a detailed model of the
MOSES sounding rocket instrument using
Fourier optics. The model is suitable for
Monte Carlo modeling of system performance
based on individual element specifications.
The theory is developed from first principles.

1 Introduction

The Multi-Order Solar Extreme Ultraviolet
Spectrograph (MOSES) is a rocket-borne in-
strument capable of simultaneous imaging
and spectroscopy at high spatial resolution
over a wide field, with high spectral resolu-
tion in a narrow band. This is accomplished
by using a multilayer coated, concave diffrac-
tion grating to form images at three spec-
tral orders, m = −1, 0, +1. Over the narrow
multilayer passband, these spectral orders
are widely separated. An oblong, multilayer
coated flat mirror folds all three beams back
to the corresponding detectors. A monochro-
matic, infinite-conjugate point source is im-
aged as a spot on each of the three detectors.
The position of each spot depends on wave-

length in a way that is proportional to m and
to the grating dispersion. For an extended
object such as the Sun, the image formed on
each detector combines spatial and spectral
information in a different way.

This study concerns the image forming
properties of the MOSES optics. There is
significant astigmatism in all three spectral
orders, especially m = ±1. This is evident
in the wavefront error and point spread func-
tions for MOSES, which I have derived using
a simple Fourier optics approach. The imple-
mentation of this model, in IDL, is capable
of finding best focus, and can take into ac-
count known (real or hypothetical) errors in
polishing the optics and ruling the grating.
These features should make it possible ulti-
mately to ingest interferogram data into the
program and predict the best focus in EUV.
The three detectors are mounted to a com-
mon structure, with shims to fix their rela-
tive positions. Since the central order has
the same best focus regardless of wavelength,
the focus can be accomplished by moving all
the detectors in tandem.

The speed of the fast Fourier transform
(FFT) makes the code suitable for Monte

1

Carlo modeling. The idea is to set optical
specifications based on an assumed PSD for
each component, produce many random re-
alizations of the entire instrument based on
the spec, and characterize the resulting per-
formance statistically.

2 MOSES Optical Design

We begin with instrument optical coordinates
(X, Y, Z) with the origin at the center of the
surface of the MOSES m = 0 detector. All
dimensions are in mm. The optic axis is
along X toward the Sun. Grating disper-
sion is in the Y direction. The Z axis is
perpendicular to the Lockheed Optical Table
System (LOTS). In that coordinate system,
the MOSES optical prescription is given by
the Roger Thomas design memo of June 20,
2009. Table 1 differs from the June 20 memo
in one respect: the naming of the plus and
minus spectral orders has been reversed (m
increases monotonically with y).

Next, we define new coordinates (x, y, z)
for the purpose of this calculation, with the
origin at the center of the grating surface
and the optical system “unfolded” —without
the fold flat, so that the detectors are now
almost 5m from the grating. The coordi-
nate axes keep their same orientation with
respect to the primary mirror. The details
are worked out in Appendix A. GNU Oc-
tave source code implementing the coordinate
transforms is given in Appendix A.1. Table 2
gives the locations of all optical elements in
the new coordinates. The center of curvature

of the spherical grating is at

(x0, y0, z0) = R · [cos(0.973◦), 0,− sin(0.973◦)]

= [9478.63, 0, 160.98].

(1)

3 Ideal MOSES

We begin by modeling MOSES as designed.
The design has aberrations, which we derive
by calculating the wavefront error (WFE) di-
rectly. The performance of the system is
characterized by calculating point spread and
modulation transfer functions from the WFE.

3.1 WFE Calculation

Light is incident on the grating at point r
from an infinite-conjugate source on the x
axis (Figure 1). The grating surface—by
which I mean the design figure, not the groove
profile—is specified by the function x(y, z).
The WFE model for imaging at a field point
f is developed by calculating the phase of
ray paths connecting the source to f through
r = [x(y, z), y, z]. The phase, in radians, for
spectral order m as a function of grating sur-
face coordinates is

φm(y, z) = φI + φG + φO. (2)

The three terms correspond to Incident,
Grating, and Object:

φI = −k x(y, z), propagation to r, (3)

φG = 2π
my

d
, diffraction grating, (4)

φO = k |f − r| , from r to f , (5)

2

Table 1: MOSES Design Table. Coordinates in mm.

Item Surface Width Height X Y Z Pitch Yaw
Pupil Flat 94.0 87.0 2518.7* 0.0 78.5 0.000 0.000
Stop Flat 80.0 80.0 118.7 0.0 78.5 +0.973 0.000
Grating R=9480 90.0 90.0 118.7 0.0 78.5 +0.973 0.000
Folding Flat 192.6 50.0 2428.6 0.0 0.0 +0.973 0.000
Det(-1) Flat 28.0 14.0 3.0 -136.7 0.0 -0.011 +2.463
Det(0) Flat 28.0 14.0 0.0 0.0 0.0 -0.004 0.000
Det(+1) Flat 28.0 14.0 3.0 +136.7 0.0 -0.011 -2.463

* Pupil X-location is somewhat flexible, but cannot be much larger than the value given
without vignetting, unless its size is increased which reduces the optical beam clearance.

Table 2: MOSES WFE Simulation Coordinates

Item Surface Width Height x y z
Grating R=9480 90.0 90.0 0.0 0.0 0.0
Folding Flat 192.6 50.0 2309.9 0.0 -78.5
Det(-1) Flat 28.0 14.0 4734.1 -136.7 -160.88
Det(0) Flat 28.0 14.0 4737.1 0.0 -160.99
Det(+1) Flat 28.0 14.0 4734.1 +136.7 -160.88

3

r

|f − r|

y

Concave Grating

In
ci

d
en

t
L
ig

ht

Field point f

x

z

Figure 1: Calculating the phase of diffracted
light in model coordinates (x, y, z). Light in-
cident on the grating at point r is diffracted
to point f (not to scale).

where k = 2π/λ is the wavenumber of the
incident light and d is the groove spacing of
the grating. The grooves are assumed parallel
to x and uniformly spaced in y. The field at
point f is the sum of contributions over the
entire mirror,

E(f) ∝
∫

M

dy dz E0(y, z)eiφm(y,z), (6)

where E0(y, z) is the amplitude of the inci-
dent light.

3.1.1 Physical Interpretation of φm

If φm(x, y) were constant over the whole aper-
ture, then every ray path would add construc-
tively at the assumed focus f . A nonzero

constant offset of φm is called piston, and
has neither physical significance nor mathe-
matical effect, as it is only the phase of the
wave at the focus. To the extent that φm

varies, the system has wavefront error. The
error can arise from something as simple as
putting the focal point f at the wrong place
(tip, tilt or defocus). The design itself, as
described above, has aberration. In other
words, there is no point f for which φm is con-
stant. The “best focus” only minimizes the
variance. Additional terms can be added to
φm account for wavefront error arising from
groove irregularities and imperfect figure of
the grating or of the fold flat.

3.2 Fourier Optics Model

In this section we briefly derive a Fourier op-
tics model of MOSES from first principles. In
this context, the only thing that sets MOSES
apart from any other imaging system is the
specific model that determines the wavefront
error (equations 2-5). In particular the grat-
ing term, φG, allows us to model diffraction
in a specific spectral order m without resolv-
ing the groove pattern. Thus, the develop-
ment that follows is generic to any imaging
system. The development of the underlying
diffraction theory is left to Appendix B.

We now consider the formation of a spot
image in the vicinity of the putative focal
point f . This neighborhood is accessed by
making small perturbations, f ′ = f + δδδ. The

4

phase from r to f ′ is

φ′O = k |f + δδδ − r|

= k

√
|f − r|2 − 2δδδ · (f − r)

+ O
(
δ2

)
.

(7)

The image is formed in a plane perpendic-
ular to f , which is the vector of the principal
ray. We therefore set δδδ · f = 0. Neglecting
terms of order δ2 and higher,

φ′O = k |f − r| − k δδδ · r
|f − r|

. (8)

Note that fy, fz � fx and |f | � |r|. Keeping
only the largest of the terms that depend on
δ,

φ′O = φO − k
δyy + δzz

f
, (9)

where f ≡ |f |. To simplest approximation,
therefore, displacements in the focal plane
merely add phase contributions proportional
to the displacement angles δy/f and δz/f .

In Appendix B, equation 35 expresses the
wave function in terms of a surface integral
over an incident beam. The (non-normalized)
wave function in the MOSES focal plane is

E =

∫
M

dy dz E0 eikφm e−ik(δyy+δzz)/f . (10)

We can express this in terms of the two-
dimensional Fourier transform of the phase
exponential:

E(v, w) = Fy,z

[
E0(y, z) eikφm(y,z)

]
. (11)

The variables v and w are the Fourier con-
jugates to y and z, respectively. They corre-

spond directly to coordinates measured rela-
tive to point f :

δy =
fv

k
,

δz =
fw

k
,

δx = −δyfy + δzfz

fx

(12)

Given the wavefunction E in the focal plane,
it is trivial to calculate standard performance
metrics such as the point spread function, line
spread function, and 1D modulation transfer
function:

P = |E|2 , PSF; (13)

L(v) =

∫
P dw, LSF; (14)

M =
∣∣∣L̃∣∣∣2 , 1D MTF. (15)

The practical motivation of the Fourier op-
tics model is that it can be computed rapidly
using the fast Fourier transform (FFT). The
next two sections briefly describe an im-
plementation of the MOSES Fourier optics
model in IDL.

3.3 Implementation—General

The WFEmodeling library comprises the
general-purpose Fourier optics codes listed
in table 3. The source codes are all pro-
vided in Appendix C. As the codes are well-
documented, they will not be discussed in de-
tail here. However, some general comments
are in order. The wavefront error (WFE)
is represented numerically as a rectangular

5

Table 3: A suite of general-purpose Fourier optics codes in IDL. Source codes are in Appendix
C. The first group is for generating and modifying WFE maps; the second group is for
analyzing them and calculating performance metrics.

Name Purpose
psd2wfe Create WFE based on assumed PSD.
wfe2psd Estimate PSD based on WFE.
mirror WFE of circular or annular aperture based on PSD.
spiders Create a Cassegrain aperture mask.
fit spherical wave Subtract tip, tilt, piston and focus from WFE.
defocus Modify WFE map to simulate a focus change.
wfe2psf Convert WFE to PSF.
psf2mtf Calculate 1D MTF (any orientation).
psf2stats Calculate moments of PSF.
wfe2strehl Calculate Strehl ratio from WFE.
wfe2fringes Make a fringe image, as if by interferometry.

matrix. All of the routines support non-
rectangular apertures by allowing the phase
to be complex. Obscured areas of the rect-
angle are indicated by a large, positive real
component. This effectively zeroes the com-
plex exponential in the wave function. More
generally, real values can be used to repre-
sent a specific distribution of incident light
on the aperture (E0(y, z)). In conformance
with typical practice in the optics community,
WFE is represented in waves rather than in
radians as in the above mathematical devel-
opment. Three test programs not listed in the
table (test1.pro, test2.pro, test3.pro)
are included as examples in the WFEmod-
eling directory.

I have not yet written a function to fit the
WFE to Zernike polynomials. This would be
a helpful way to characterize the aberration,

even though Zernike polynomials are not or-
thogonal over the (square) MOSES aperture.

3.4 Implementation—MOSES

A set of codes for modeling and analyzing the
MOSES instrument. The source codes are
in Appendix D. The IDL routine moses wfe

(Appendix D.1) calculates the wavefront er-
ror of MOSES. There are options to optimize
the focus position (which removes tip, tilt and
defocus), and to input manufacturing wave-
front errors. The IDL script moses ideal

(Appendix D.2) implements a demonstration
of moses wfe for the optics as designed. The
results of moses ideal are shown in table 4,
and Figures 2-3.

The primary aberration in all spectral or-
ders is astigmatism. This is consistent with a

6

spherical mirror used off-axis. In the nonzero
spectral orders, the diffraction angle adds to
the effective field angle, leading to large astig-
matism. This is by design. The larger PSFs
in the outboard orders reduce imaging perfor-
mance, but also ensure a band-limited image
so that they can be co-registered to the cen-
tral order.

4 Test 1: Astigmatism

The ability of the model to incorporate fig-
ure error is tested by moses test1 (Appendix
D.5). I chose an arbitrary grating figure er-
ror ∆x = Ayz, where A = 10−7 mm−1. This
is pure astigmatism. Using the wfe grating

keyword, I applied the corresponding wave-
front error:

φP =
2

pi
Ayz. (16)

The results are shown in Table 5 and Figures
4-5. The resulting focus shift, compared to
the ideal case (Table 4), is calculable but in-
significant. The applied astigmatism is ap-
proximately double the value of the astig-
matism inherent in the MOSES design for
m = ±1. The WFE for the minus order,
which has inherent astigmatism of the oppo-
site sign, remains about the same, while the
WFE in m = +1 is tripled. This leads to
the highly asymmetric performance shown in
Figure 5.

7

Table 4: Results of moses ideal. Optimal focus position is given by f + [dx, dy, dz].

m RMS WFE dx dy dz
−1 1.95 0.174 -0.074 -0.010
0 0.35 0.131 0.000 +0.033

+1 1.95 0.174 +0.074 -0.010

Figure 2: Ideal wavefront error (in waves, λ = 304 Å) of MOSES for m = −1, 0, +1.

Table 5: Results of moses test1. Optimal focus position is given by f + [dx, dy, dz].

m RMS WFE dx dy dz
−1 1.83 0.169 -0.074 -0.010
0 3.54 0.131 0.000 0.033

+1 5.39 0.180 0.074 -0.010

8

Figure 3: Ideal point spread function of MOSES for m = −1, 0, +1 (negative images). The
13.5µm square centered in each plot represents one pixel.

Figure 4: Wavefront error (in waves) for m = −1, 0, +1, including the astigmatism specified
in equation 16.

9

Figure 5: Point spread function for m = −1, 0, +1 (negative images). This includes the
astigmatism specified in equation 16. The 13.5µm square centered in each plot represents
one pixel. Note the different scale compared to Figure 3.

10

5 Test 2: Focus Series

The function moses defocus (Appendix D.3)
simulates a focus series for the instrument.
The calculation is done two ways:

1. By directly moving the image plane from

ideal focus.

2. Using the defocus routine.

The latter method adds a paraboloid to the
WFE, with a radius of curvature determined
by the system f-ratio and the desired degree
of defocus.

The results are spooled out to a rather
large save file, which can then be inter-
preted by a script such as mdef analyze

(Appendix D.4). There is provision for a
manufacturing wavefront error to be input
to moses defocus, but moses test2 pro-
vides an elementary example for an idealized
MOSES. As of this writing, with 51 focus
steps, moses test2 takes about 9 minutes on
a MacBook Pro 2.16GHz Core 2 Duo.

Figure 7: Summary results of the focus series.

Figure 6 is an embedded movie showing the
results by both calculation methods. Note
that they are identical. The astigmatism of
all three spatial orders is evident in the fo-
cus series. Both methods of calculation yield

11

focus movie

Figure 6: MOSES focus series animation. The central frame corresponds to figure 3.

identical results, which validates the conve-
nient and completely generic defocus pro-
gram. The spot size is plotted vs. focus po-
sition in figure 7. The dashed line shows how
the RMS spot radius would behave in the ab-
sence of diffraction and aberrations.

6 Test 3: One WFE Real-

ization

What could lead to the PSFs observed in
the MOSES -2006 flight data? Function
moses test3 (Appendix D.7) explores this
question in a preliminary way. A small
amount of astigmatism is applied to the
MOSES WFE, and then a focus series is gen-
erated.

12

MOSESfocus.mov
Media File (video/quicktime)

A Coordinate transform

We wish to transform from design coordinates (X, Y, Z) to model coordinates (x, y, z). The
axes keep the same orientation, but the origin is moved to the center of the concave grating.
The coordinates of the detector of order m are placed at its virtual image in the fold flat.
The geometry is summarized in Figure 8. By definition,

(xG, yG, zG) = (0, 0, 0). (17)

The coordinates of the fold flat are

xF = XF −XG, (18)

yF = 0, (19)

zF = ZF − ZG. (20)

For the detectors,
ym = Ym. (21)

The rays extrapolated through the fold flat to the virtual image of the detector have slope

M ≡ ZF − ZG

XF −XG

=
zm − zF

xm − xF

. (22)

The distance to focus has to remain the same, so

(xm − xF)2 + (zm − zF)2

= (Xm −XF)2 + (Zm − ZF)2 . (23)

(xm, zm)

(xF , zF)
(XF , ZF)

(xG, zG)
(XG, ZG)

(Xm, Zm)

x

Fold flat

Grating

Detector m

z

y

Figure 8: Design coordinates (X, Y, Z) and model coordinates (x, y, z) (not to scale).

13

Solving equation 22 for zm and substituting into equation 23,

zm = zF + M(xm − xF), where (24)

xm = xF +

√
(Xm −XF)2 + (Zm − ZF)2

1 + M2
. (25)

A.1 Source Code: coordinate xform.m

This simple GNU Octave program implements the change of coordinates derived in Appendix
A.

% This is a script for converting MOSES design coordinates to WFE

% model coordinates.

% 2009-May-20 C. Kankelborg

clear % Erase any variables that have been defined previously.

O = ’= = Design coordinates XYZ (mm) = = = O’

% Grating:

XG = 118.7

YG = 0.0

ZG = 78.5

% Fold flat:

XF = 2428.6

YF = 0.0

ZF = 0.0

% Spectral orders:

m = [-1, 0, +1]

% Detectors at each spectral order:

X = [3.0, 0.0, 3.0]

Y = [-136.7, 0.0, 136.7]

Z = [0.0, 0.0, 0.0]

O = ’= = Model coordinates xyz (mm) = = = O’

% By definition:

xG = 0

yG = 0

zG = 0

14

% Translation of coordinates for the fold flat:

xF = XF - XG

yF = 0

zF = ZF - ZG

% Find new detector coordinates, unfolding the fold mirror:

y = Y

M = (ZF - ZG)/(XF - XG)

x = xF + sqrt(((X-XF).^2 + (Z-ZF).^2) ./ (1+M^2))

z = zF + M*(x - xF)

B Diffraction Theory

In free space, electromagnetic radiation propagates according to the wave equation,

c2∇2E =
∂2E

∂t2
. (26)

This equation for the electric field follows easily from Maxwell’s equations, and is satisfied
also by the magnetic field. We will make a series of simplifications, resulting in a straightfor-
ward foralism that represents the propagation of the wave through our instrument in terms
of a wavefront entering a small aperture. Our approach will differ from traditional textbook
presentations in that we will not assume that the aperture lies in a plane perpendicular to
the direction of propagation. Instead, our formalism facilitates the treatment of a slow beam
emerging from the surface of a steeply angled and/or strongly figured mirror or diffraction
grating.

The general solution of the vector wave equation may be expressed in terms of plane
waves. This solution, however, is not of much use because the wave equation itself does not
encapsulate all of the physics. Only transverse wave solutions satisfy Maxwell’s equations.
To avoid the complexity introduced by the transversality requirement, we will instead treat
waves in a scalar field,

c2∇2E =
∂2E

∂t2
. (27)

This may seem like an artificial choice, but if we confine ourselves to small f -ratio (as we
will momentarily), transverse waves of each polarization state may be considered separately
as scalar waves. In practice, the two polarizations may or may not behave differently enough
to require separate treatment.

15

Consider monochromatic waves,

E = E(r)eiωt, ω = kc.

This results in the Helmholtz equation,

(∇2 + k2)E = 0. (28)

This time independent approach sacrifices no generality at all, because a fully time dependent
solution can be synthesized by superimposing waves of different frequencies.

We will now solve for E(f), where the “field point” f lies within a volume V , a distance R
from source point r. We are given E(r) on the entire enclosing surface ∂V . The geometry is
sketched in figure 9. We define the Green’s function,

G(R) =
eikR

4πR
, R ≡ |f − r| , (29)

R
A

n̂ r
f

∂V

V

Figure 9: Sketch of the volume V on which the Helmholtz equation is to be solved.

16

which has the useful property

(∇2 + k2)G = δ(f − r). (30)

The solution is derived from Green’s second identity,∫
V

[
E∇2G−G∇2E

]
d3r =

∮
∂V

[E∇G−G∇E] · dS. (31)

Equations 28 and 30 simplify the left side. Using the normal derivative ∂n ≡ (dS · ∇)/|dS|
on the right,

E(f) =

∮
∂V

[
E

∂G

∂n
−G

∂E

∂n

]
dS. (32)

We imagine that light is entering V through an “aperture” A. It is assumed that the electric
field and its normal derivative are zero on the surface ∂V except within the aperture, so
that the surface integral may be restricted to A.1 We further assume a narrow (slow) beam,
aligned nearly parallel to the vector f − r. This entails, among other things, a large f-ratio
(R/

√
A � 1). Without any further assumptions, our x-axis is chosen to make small angles

with the beam and with f − r. Therefore,

∂

∂n
=

n̂ · (r− f)

|r− f |
∂

∂R
= − n̂ · (r− f)

|r− f |
∂

∂x
. (33)

The dot product can be eliminated by taking the integral over the variables y and z that
are (approximately) orthogonal to the propagation direction. In other words,

dS = dy dz
|r− f |

n̂ · (r− f)
,

and so

E(f) =

∫∫
A

[
E

∂G

∂R
+ G

∂E

∂x

]
dy dz. (34)

If the fractional variation in R is small and kR � 1 (i.e., the far field), then the expression
for the wave function becomes exceedingly simple:

E(f) =
ik

2πR

∫∫
A

E(r)eikR dy dz. (35)

The factor of i only affects the phase. If we are only interested in calculating point spread
functions, we may ignore the normalization factor in front of the integral. We have made

1This actually introduces a mathematical inconsistency. See, e.g., Born and Wolf.

17

a series of assumptions that restrict our attention to the far field of a slow optical system.
However, we have left open the possibility that the surface A is strongly curved and angled
with respect to the xy-plane. This formulation is not among the traditional diffraction
approximations (e.g. Kirchoff, Fresnel, Fraunhofer). Nevertheless, it is compatible with a
simple Fourier transform approach, as demonstrated in Section 3.2.

18

C WFEmodeling Library

C.1 Source Code: psd2wfe.pro

;NAME:

; PSD2WFE

;PURPOSE:

; Convert a power spectral density for polishing errors in a

; reflective optic to a randomly generated wavefront error (WFE) map.

; The WFE is generated from the power spectrum using random phases

; and amplitudes. It is *not* periodic. Note from the documentation

; below that the PSD runs from zero to the Nyquist frequency in units

; of exactly *half* the fundamental. Note that the output WFE map is

; complex (see keyword CIRCULAR). The imaginary part could be used

; to represent apodization or nonuniform illumination of the aperture

; if you like.

;CALLING SEQUENCE:

; wfe = psd2wfe(psd [, rms=rms | pv=pv])

;INPUT PARAMETERS:

; PSD = An N-element power spectral density for the polishing errors.

; The period associated with the ith element of PSD is 2(N-1)/i

; pixels in the ouptut N x N wafefront error map. One consequence

; of this is that there is noplace to specify power in the frequency

; interval between the 1D Nyquist frequency and the diagonal

; Nyquist frequency. The PSD will be assumed flat in this range.

;OPTIONAL KEYWORD INPUTS:

; RMS = The (scalar) RMS wavefront error. This is used to scale the

; result, which eliminates any ambiguity about the normalization

; of the Fourier transform (and hence of the PSD).

; PV = Alternative to RMS, may specify peak-to-valley.

; CIRCULAR = If set, then a circular aperture is inscribed in the square

; WFE array. The region outside the circle is assigned the value

; complex(0, 1e9). This results in a zero E-field later, which is

; appropriate for regions outside the aperture.

; VERBOSE = If set, then print out some informative statistics.

;OUTPUTS:

; WFE = a randomly generated, N x N wavefront error map that is consistent

; with the input PSD and RMS or PV. If neither RMS nor PV are specified,

19

; then the WFE will have a PV of 0.25 (a notional quarter-wave mirror).

;MODIFICATION HISTORUY:

; 2008-OCT-29 C. Kankelborg

; 2008-Nov-03 CCK Incorporated removal of best-fit spherical wave

; before normalizing the WFE.

; 2008-Nov-07 CCK Added keyword option /CIRCULAR, and thereby

; introduced the concept of a complex WFE map. The imaginary

; part represents attenuation of the electric field amplitude.

; 2008-Nov-10 CCK fixed bug--- sqrt(PSD) to get amplitudes. Added

; diagnostic printing of Strehl ratio. Added VERBOSE keyword

; so that diagnostic messages are suppressed by default.

function psd2wfe, psd, rms=rms, pv=pv, circular=circular

const_i = sqrt(complex(-1)) ;square root of minus one

N = n_elements(psd)

frequencies = (dist(2L*N)) < N ;2N x 2N array of frequencies

ft_power = interpolate(psd, frequencies, cubic=-0.5)>0

;threshold is to eliminate negatives that creep in from the interpolation.

ft_amplitudes = sqrt(ft_power)

;amplitude is the square root of power.

ft_phases = 2.0 * !pi * randomu(seed, 2L*N, 2L*N)

ft_complex = ft_amplitudes * exp(const_i * ft_phases)

wfe_big = float(fft(ft_complex, /inverse))

wfe1 = wfe_big[0:N-1, 0:N-1] ;Cropping eliminates the periodic boundary conditions.

;Now subtract best-fit spherical wave

spherewave = fit_spherical_wave(wfe1)

wfe = complex(wfe1 - spherewave)

;Henceforth WFE will be complex. This has many uses, including

;the representation of apetures, apodization, and nonuniform

;illumination.

if keyword_set(verbose) then begin

print,’Subtracted spherical component PV = ’,max(spherewave) - min(spherewave)

print,’Residual WFE before normalization is PV = ’,max(wfe) - min(wfe)

20

endif

;Introduce aperture cropping, if any

if keyword_set(CIRCULAR) then begin

aperture = where(shift(dist(N), N/2, N/2) lt N/2, complement=crop)

wfe[crop] = complex(0,1e9)

endif else aperture = findgen(N,N)

;Normalize wfe (any apodization or nonuniform aperture features should

;be inserted AFTER this step, since we would not want them to interfere

;with the scaling of the mirror surface figure)

wfe[aperture] -= mean(wfe[aperture]) ;set to mean of zero.

if keyword_set(rms) then begin

wfe[aperture] *= rms / stdev(wfe[aperture])

;scale to desired RMS wavefront error

endif else begin

if not keyword_set(pv) then pv = 0.25 ;quarter wave nominal

range = max(wfe[aperture]) - min(wfe[aperture])

wfe[aperture] *= pv/range

endelse

if keyword_set(verbose) then begin

print,’WFE realized PV = ’, max(wfe[aperture]) - min(wfe[aperture])

print,’WFE realized RMS = ’,stdev(wfe[aperture])

print,’Strehl = ’,wfe2strehl(wfe)

endif

return, wfe

end

C.2 Source Code: wfe2psd.pro

;NAME:

; WFE2PSD

;PURPOSE:

; Produce an estimate of the power spectral density (PSD) of a wavefront

21

; error map (WFE).

;CALLING SEQUENCE:

; psd_est = wfe2psd(wfe)

;ALGORITHM:

; A periodogram approach is used with a Hanning window. Two estimates

; are produced and averaged: one using a vertical chord, and one a

; horizontal chord. Compare Walsh et al. 1999, Appl. Opt. Vol. 38, No. 22,

; p.4790.

;MODIFICATION HISTORY:

; 2008-Nov-10 C. Kankelborg

function wfe2psd, wfe

wfe_size=size(wfe)

N = wfe_size[1]

if wfe_size[2] ne N then message,’WFE not square. Exiting.’

windo = hanning(N)

;windowing function for estimate of PSD

chord1 = float(wfe[N/2,*])

chord2 = float(wfe[*,N/2])

c1fft = fft(chord1 * windo)

c2fft = fft(chord2 * windo)

psd = abs(c1fft)^2 + abs(c2fft)^2

;IDEA: ADD FEATURE TO FIT A POWER LAW TO THE PSD

return,psd[0:N/2-1]

end

C.3 Source Code: mirror.pro

;NAME:

; mirror

;PURPOSE:

; Use physical parameters to generate PSD and WFE for a mirror.

22

; The polishing process is modeled by a power law PSD from one

; period per diameter down to a cutoff.

;CALLING SEQUENCE:

; wfe = mirror(diameter, rmswfe [, N=N] [, hole=hole] $

; [, pindex=pindex] [, pcutoff=pcutoff] $

; [, psd=psd] [, period=period]

;INPUT PARAMETERS:

; diameter = diameter of the beam on the mirror (not the mirror

; itself) in physical units (usually mm).

;OPTIONAL INPUT PARAMETERS:

; rmswfe = RMS wavefront error (floating point number). If not supplied,

; then the default behavior of psd2wfe will be used (1/4 wave PV).

;OUTPUT PARAMETERS:

; wfe = wavefront error (WFE) for a particular, randomized

; realization with the desired PSD.

;OPTIONAL KEYWORD INPUTS:

; N = number of points (integer). The resulting PSD will have N

; elements, and the WFE map will be NxN. Default=256.

; circular = if set, use a circular aperture (passed straight

; through to psd2wfe).

; pindex = power-law index of the power spectral density (PSD)

; of the polishing errors. PSD goes as

; PSD = k^(-pindex).

; Typical values are 2.1-3.0. Default=2.5.

; pcutoff = The shortest period that will have nonzero power.

; By default, 4mm. Use this keyword if you want a different

; cutoff or if you want to use different units for the diameter.

; hole = Diameter of concentric hole to be drilled in mirror. Uses same

; units as diameter and pcutoff.

; renormalize = If set, then renormalize to get the specified rmswfe over

; the clear aperture, excluding the "hole" if specified. If not set,

; then rmswfe will pertain to everything within the outer

; boundary of the aperture.

;OPTIONAL KEYWORD OUTPUTS:

; psd = The N-element PSD array. Note that the scale of the PSD

; values is arbitrary.

; period = N-element array of period values, in the same units

; as diameter and pcutoff.

23

; aperture = index array of WFE elements within the clear aperture.

; Especially handy for annular mirrors (see CIRCULAR & HOLE keywords).

;MODIFICATION HISTORY:

; 2008-Nov-09 C. Kankelborg

; 2008-Nov-10 CCK Added HOLE and APERTURE keywords. Modified default

; pindex to 2.5 based on SAO input. Improved documentation.

; 2008-Nov-17 CCK added RENORMALIZE keyword to correct rmswfe when HOLE

; is specified.

function mirror, diameter, rmswfe, N=N, $

pindex=pindex, pcutoff=pcutoff, psd=psd, circular=circular, $

period=period, aperture=aperture, hole=hole, renormalize=renormalize

;Default keyword values

if not keyword_set(N) then N=256 ;default resolution of WFE map

if not keyword_set(pcutoff) then pcutoff = 4 ;mm minimum period

if not keyword_set(pindex) then pindex = 2.5

k = findgen(N) ;wavenumber scale, arbitrary units

period = 2.0*diameter/k ;period in same units as diameter

;NOTE:

;In keeping with psd2wfe, an N-element PSD leads to an NxN WFE.

;The following table may help to clarify the meaning of the

;frequency elements:

;

; k interpretation

; ----------------------------------

; 0 DC.

; 1 1/2 period per diameter

; 2 1 period per diamater

; ...

; N-1 Nyquist frequency

;Implement power law PSD

psd = k^(-pindex)

psd[0:1] = 0

;first k with nonzero power is 1 per diameter

24

;Implement cutoff frequency

ss = where(period lt pcutoff)

if ss[0] ne -1 then psd[ss]=0

;Calculate and return WFE

wfe = psd2wfe(psd, rms=rmswfe, circular=circular)

;Drill hole if desired

if keyword_set(hole) then begin

radius = round(N/2.0*hole/diameter) ;calculate radius in pixels

radii = shift(dist(N), N/2, N/2)

ss = where(radii lt radius) ;find where the hole lives

wfe[ss] = complex(0, 1e9) ;drill the hole

endif

aperture = where(imaginary(wfe) lt 1.0)

if keyword_set(renormalize) then begin

wfe[aperture] *= rmswfe/stdev(wfe[aperture])

endif

return, wfe

end

C.4 Source Code: spiders.pro

;NAME:

; SPIDERS

;PURPOSE:

; Model the spiders that support a Cassegrain secondary mirror for

; purposes of WFE/PSF/MTF estimation. The resulting mask is to be

; ADDED to a WFE map in order to block the wavefront. Note that

; the mirror procedure is capable of setting up a circular aperture

; with a central obstruction. Thus, MIRROR and SPIDERS together form

; a comprehensive way of modeling the aperture of a Cassegrain telescope.

;CALLING SEQUENCE:

25

; mask = spiders(N,widths,angles)

;EXAMPLE:

; wfe += spiders(N,widths,angles) ;the mask is ADDED to the WFE.

;INPUT PARAMETERS:

; N = size of square WFE array (N x N)

; widths = Array of spider widths in pixels.

; angles = Array of spider angles in degrees. Must have same number

; of elements as the widths array. Angles are measured CCW

; from a horizontal axis drawn from mask array center to right edge.

;OUTPUT PARAMETERS:

; mask = An NxN complex array whose real part is 1.0 everywhere. The

; imaginary part is 1e6 or greater on the spiders and 0.0 elsewhere. When

; mask is multiplied by a WFE map, it has the effect of zeroing the

; electric field on the spiders.

;MODIFICATION HISTORY:

; 2008-Nov-14 C. Kankelborg

;

function spiders, N, widths, angles

Nspiders = n_elements(widths)

if n_elements(angles) ne Nspiders then $

message,’How many spiders do you really want? widths and angles do not have the same number of elements.’

;Initialize the mask.

mask = replicate(complex(0.0, 0.0), N, N)

;Create each spider and add it into the mask.

for i=0, Nspiders-1 do begin

spider = complexarr(N, N)

baseline = round((N-widths[i]-0.0)/2)

spider[N/2:N-1, baseline:round(baseline+widths[i]-1)] = complex(0.0, 1e6)

mask += rot(spider, -angles[i])

endfor

return, mask

end

26

C.5 Source Code: fit spherical wave.pro

;NAME:

; fit_spherical_wave

;PURPOSE:

; Find the best-fit spherical wave to a WFE map so that it can be subtracted

; out. This is equivalent to removing defocus, tip and tilt. Actually, I have

; settled for a paraboloid approximation of a sphere. The best fit is defined

; by minimizing the sum of the absolute deviations (robust fitting).

;CALLING SEQUENCE:

; swave = fit_spherical_wave(wfe)

;INPUT PARAMETERS:

; WFE = 2D wavefront error map. The units can be phase, waves, nanometers,

; or whatever. Compatible with complex WFE as introduced in psd2wfe.

;OUTPUTS:

; SWAVE = Best fit spherical surface, in the same units as WFE. The WFE

; pixels are assumed to be square.

;MODIFICATION HISTORY:

; 2008-Nov-03 C. Kankelborg

; 2008-Nov-10 CCK adapted to complex wfe (see psd2wfe.pro).

; 2009-May-28 CCK tweaked precision and max iterations for

; use with moses_ideal.pro.

function paraboloid, prams

common fsw_block, wfe, Nx, Ny, xp, yp, aperture

z1 = prams[0] ;offset

K = prams[1] ;curvature; K = 1/R if xy units equal z units.

x0 = prams[2] ;center

y0 = prams[3] ;center

return, (K/2.0)*((xp-x0)^2 + (yp-y0)^2) + z1

end

function badness, prams

common fsw_block, wfe, Nx, Ny, xp, yp, aperture

sphere = paraboloid(prams)

result = total(abs(sphere[aperture] - wfe[aperture])) + 1.0

27

;The 1.0 aids in convergence!

; print,’[z1,K,x0,y0] = ’,prams

; print,’badness = ’,result

return,result

end

function fit_spherical_wave, wfe

common fsw_block, wfe_temporary, Nx, Ny, xp, yp, aperture

wfe_temporary = wfe ;Silly, memory-wasting workaround for the common block

aperture = where(imaginary(wfe) lt 1) ;adaptation to complex WFE

wfe_size = size(wfe)

Nx = wfe_size[1]

Ny = wfe_size[2]

;Create rectangular arrays for x and y coordinates.

xp = findgen(Nx) # replicate(1.0,Ny)

yp = replicate(1.0,Nx) # findgen(Ny)

initial_prams = [0,0,Nx/2.0,Ny/2.0]

scale_prams = [1.0, 1.0/((Nx/2)^2.0 + (Ny/2)^2.0), Nx, Ny]

prams_fit = amoeba(1e-5, FUNCTION_NAME = ’badness’, $

P0=initial_prams, scale=scale_prams, nmax=10000)

return, paraboloid(prams_fit)

end

C.6 Source Code: defocus.pro

;+

;NAME:

; DEFOCUS

;PURPOSE:

28

; Modify a wavefront error (WFE) image to simulate an increase (or decrease)

; in distance to the detector. Resulting PSFs obtained with WFE2PSF will

; show the focus changes, and can be used to create a focus series.

;CALLING SEQUENCE:

; wfe_new = defocus(wfe_orig, disp, fratio, lambda)

;INPUT PARAMETERS:

; wfe_orig -- 2D image of WFE, in waves, associated with the optical system.

; disp -- displacement (change in distance from aperture to detector), in

; same units as lambda.

; fratio -- f-ratio of the optical system: effective focal length divided

; by aperture diameter, where the aperture diameter equals the width of

; the WFE image.

; lambda -- wavelength of light, in same units as distance. If included,

; then it is assumed that the wfe input and output will be in waves.

; If it is not given, then lambda is set to 1 (equivalently, we may

; say that the WFE is assumed to be in the same distance units as

; disp, or that the displacement is given in waves).

;OUTPUT PARAMETERS:

; wfe_new -- wavefront error with a paraboloid of revolution added, to

; simulate the desired defocus (specified by distance).

;OPTIONAL OUTPUT KEYWORDS:

; wfe_change -- change in WFE (wfe_new - wfe_orig).

;ALGORITHM:

; We assume a large f-ratio, which results in a paraboloidal change in

; wavefront error given by:

; WFE_change = -0.5*(disp/lambda) * (x^2 + y^2) / fratio^2,

; where x and y are coordinates centered in the aperture and normalized

; to its width. If fratio < 4, a warning is thrown.

;BUGS:

; There may be some ambiguity as to what is meant by a positive wavefront

; error. If the convention of this program differs from the convention

; that generated wfe_orig, then the sign of disp would effectively be

; reversed. Might want to include a keyword for that. By the way, this

; version has been tested to agree with an alternate calculation in

; moses_defocus.

;MODIFICATION HISTORY:

; 2009-Jun-10 C. Kankelborg

; 2009-Jun-11 CCK reversed sign of WFE change based on testing with

29

; moses_defocus.

;-

function defocus, wfe_orig, disp, fratio, lambda, wfe_change=wfe_change

if n_elements(lambda) ne 1 then lambda = 1.0

if fratio lt 4.0 then message, $

’WARNING: The approximation may be poor for fratio < 4.’, /informational

;Create normalized aperture coordinates

wfesize = size(wfe_orig)

Nx = wfesize[1]

Ny = wfesize[2]

xlin = findgen(Nx)/(Nx-1.0) - 0.5

ylin = (findgen(Ny) - 0.5*(Ny-1))/(Nx-1.0)

x = xlin # replicate(1.0, Ny)

y = replicate(1.0, Nx) # ylin

;Calculate WFE

wfe_change = -0.5*(disp/lambda) * (x^2 + y^2) / fratio^2

return, wfe_orig + wfe_change

end

C.7 Source Code: wfe2psf.pro

;NAME:

; wfe2psf

;PURPOSE:

; Convert a wavefront error map to a point spread function.

;CALLING SEQUENCE;

; psf = wfe2psf(wfe [,oversample=oversample])

; ...see below for more keyword options!

;INPUT PARAMETERS:

; wfe = wavefront error map, which may be complex as documented

; in psd2wfe.pro. Must be a 2D square (NxN) array. Note that large

; imaginary values essentially result in zero Efield (darkness). This

; is how apertures are marked off. And by more subtle application,

; apodization or nonuniform illumination effects could also be

30

; implemented.

;OUTPUT PARAMETERS:

; psf = (scalar, 2D array) point spread function, same dimensions

; as the input wfe, and normalized to 100% response at DC.

;OPTIONAL KEYWORD INPUTS:

; oversample = factor by which to oversample the PSF. Oversampling is

; highly recommended. Default=4. Only integer values have been tested,

; but maybe a non-integer would work. Do you feel lucky?

; fratio = The f-ratio of the beam (focal length / diameter). Don’t use

; an effective f-ratio or T-ratio here, as this is solely for

; geometric calculation of dx and xarr (see below).

; lambda = Wavelength of the light. See dx and xarr below.

;OPTIONAL KEYWORD OUTPUTS:

; dx = scale of pixels of the output image. Requires fratio and

; wavelength keywords. The units are the same as the wavelength units.

; xarr = array of axis values for the side of the PSF image. Requires

; fratio and wavelength keywords. Units same as wavelength.

;MODIFICATION HISTORY:

; 2008-Nov-07 C. Kankelborg

; 2008-Nov-10 CCK added dx and xarr keywords.

;

function wfe2psf, wfe, oversample=oversample, fratio=fratio, lambda=lambda, $

dx=dx, xarr=xarr

wfe_size = size(wfe)

N = wfe_size[1]

i = complex(0,1) ;square root of minus one

if not keyword_set(oversample) then oversample=4

bigmap = complexarr(oversample*N, oversample*N)

;padded to the degree specified by the oversample parameter.

bigmap[0:N-1,0:N-1] = exp(i * wfe * 2 * !pi)

bigmap = shift(bigmap, -N/2, -N/2)

Efield = fft(bigmap)

intensity = abs(Efield)^2

intensity_small = (shift(intensity, N/2, N/2))[0:N-1, 0:N-1]

31

;Work out the scale of the PSF map.

;Without oversampling, one pixel would subtend an angle equal to the

;wavelength over the beam diameter.

if (n_elements(fratio) eq 1) and (n_elements(lambda) eq 1) then begin

dx = lambda * fratio / oversample

xarr = (findgen(N) - N/2.0) * dx

endif

return, intensity_small/total(intensity_small)

end

C.8 Source Code: psf2mtf.pro

;NAME:

; psf2mtf

;PURPOSE:

; Convert a point spread function to a modulation transfer function

; (and optionally a line spread function).

;CALLING SEQUENCE:

; mtf = psf2mtf(psf [, theta=theta] [, lsf = lsf] [, dx=dx], [, karr=karr])

;INPUT PARAMETERS:

; psf = point spread function (floating point 2D array, Nx x Ny). This

; need not be properly normalized.

;OUTPUT PARAMETERS:

; mtf = modulation transfer function, which is the amplitude response

; as a function of scalar wavenumber. This is a 1D array with Nx/2

; elements. Normalized to unit DC response.

;OPTIONAL KEYWORD INPUTS:

; theta = CCW orientation of sinusoidal test pattern in degrees.

; Default, theta=0, corresponds to vertical bars (horizontal

; resolution).

; dx = PSF pixel size, in whatever length units are desired for karr.

;OPTIONAL KEYWORD OUTPUTS:

; lsf = linespread function (which is just PSF summed along the orientation

; specified by theta).

; karr = If dx is supplied, then karr is the frequency axis for the MTF

; in periods per unit length.

;MODIFICATION HISTORY:

32

; 2008-Nov-07 C. Kankelborg

; 2008-Nov-10 CCK added dx and karr keywords.

function psf2mtf, psf, theta=theta, lsf=lsf, dx=dx, karr=karr

psf_size = size(psf)

Nx = psf_size(1)

if n_elements(theta) ne 1 then theta=0

psf_rot = rot(psf,theta)

lsf = total(psf_rot,2) ;linespread function

mtf = (abs(fft(lsf)))[0:Nx/2] ;leave out the redundant negative frequencies

if keyword_set(dx) then begin

karr = findgen(Nx/2+1)/(Nx*dx) ;Max is Nyquist frequency, 1/(2*dx).

endif

return, mtf/mtf[0] ;properly normalized, unity DC response one hopes!

end

C.9 Source Code: psf2stats.pro

;NAME:

; psf2stats

;PURPOSE:

; Convert a point spread function to RMS spot radius (and optionally some

; other statistics).

;CALLING SEQUENCE:

; rmsrad = psf2stats(psf [, dx=dx])

;INPUT PARAMETERS:

; psf = point spread function (floating point 2D array, Nx x Ny). This

; need not be properly normalized.

;OPTIONAL KEYWORD INPUTS:

; dx = PSF pixel size, in whatever length units are desired. Default=1.

; Square pixels are assumed.

;OPTIONAL KEYWORD OUTPUTS:

; I0 = zeroth moment (total fluence just total(psf)).

33

; xc, yc = centroid coordinates (origin at image center).

;MODIFICATION HISTORY:

; 2009-Jun-23 C. Kankelborg

function psf2stats, psf, dx=dx, I0=I0, xc=xc, yc=yc

psf_size = size(psf)

Nx = psf_size[1]

Ny = psf_size[2]

;Coordinates (origin at image center):

x = (findgen(Nx) - (Nx-1)/2.0)*dx # replicate(1.0, Ny)

y = replicate(1.0, Nx) # (findgen(Ny) - (Ny-1)/2.0)*dx

;Zeroth moment (total fluence):

I0 = total(psf)

;First moments (centroid):

xc = total(x*psf)/I0

yc = total(y*psf)/I0

;Second moments:

r2 = (x-xc)^2 + (y-yc)^2 ;square of radius from spot center

rmsrad = sqrt(total(r2*psf)/I0)

return, rmsrad

end

C.10 Source Code: wfe2strehl.pro

;NAME:

; wfe2strehl

;PURPOSE:

; Convert a wavefront error map to a Strehl ratio. This is defined

; as the fraction of diffraction-limited intensity at the

; diffraction-limited (gaussian) focus. For the result to be correct,

; the best-fit sphere must have been subtracted from the WFE. All my

; functions that generate WFE maps should do this automatically

; (e.g. psd2wfe).

34

;CALLING SEQUENCE:

; strehl = wfe2strehl(wfe)

;INPUT PARAMETERS:

; wfe = wavefront error map in waves.

;OUTPUT PARAMETERS:

; strehl = the strehl ratio. According to the Marechal criterion,

; strehl > 0.8 is diffraction limited.

;ALGORITHM:

; I use the exact form of the Strehl ratio given by Wyant ch.1,

; eq. 64. See:

; http://www.optics.arizona.edu/jcwyant/zernikes/Zernikes.pdf

;MODIFICATION HISTORY:

; 2008-Nov-09 C. Kankelborg

function wfe2strehl, wfe

i = complex(0,1) ;square root of minus one

Efield = exp(2*!pi*i*WFE)

strehl = (abs(total(Efield)) / total(abs(Efield)))^2

return, strehl

end

C.11 Source Code: wfe2fringes.pro

;NAME:

; WFE2FRINGES

;PURPOSE:

; Convert a map of wavefront error to an image of horizontal or vertical

; fringes, as they would appear in an interferometer. It may be useless,

; but it is cute.

;CALLING SEQUENCE:

; fringes = wfe2fringes(wfe [, nfringes=nfringes] [, /vertical])

;INPUT PARAMETERS:

; WFE = An Nx x Ny wavefront error map (in units of waves).

;OPTIONAL KEYWORD INPUTS:

; NFRINGES = Number of fringes over the mirror surface. Default=4.

; VERTICAL = If set, then make the fringes vertical (by default, they

; are horizontal).

35

;OUTPUTS:

; FRINGES = An image of the fringes you would see corresponding to the input WFE.

;MODIFICATION HISTORUY:

; 2008-OCT-30 C. Kankelborg

; 2008-Nov-07 CCK Made compatible with complex WFE maps (see psd2wfe.pro)

function wfe2fringes, wfe, nfringes=nfringes, vertical=vertical

if not keyword_set(nfringes) then nfringes=4

wfe_size = size(wfe)

Nx = wfe_size[1]

Ny = wfe_size[2]

;Construct perfect fringes, either vertical or horizontal.

if keyword_set(vertical) then begin ;vertical fringes

fringes = nfringes*findgen(Ny,Nx)/((Nx-1)*(Ny-1))

fringes = transpose(fringes)

endif else begin ;horizontal fringes

fringes = nfringes*findgen(Nx,Ny)/((Nx-1)*(Ny-1))

endelse

fringes += wfe ;Add wavefront error onto the perfect fringes

;Modulate and return.

i = complex(0,1) ;square root of minus one.

return, exp(2*!pi*i*fringes)

end

D MOSES Fourier Optics Codes

D.1 Source Code: moses wfe.pro

;NAME:

; moses_wfe

;PURPOSE:

36

; Model the wavefront error (WFE) of the MOSES instrument. Dimensions

; are in mm. WFE is in waves.

;CALLING SEQUENCE:

; WFE = moses_wfe(m [, <various options>])

;INPUTS:

; m = spectral order (normally 1, 0, or -1). Note that the input

; value is converted to float on return.

;OPTIONAL KEYWORDS:

; N = (input) size of mesh (NxN).

; lambda = (input) wavelength (mm). Default 304e-7 (MOSES 06

; nominal wavelength).

; optimize = if set, then remove tip/tilt and defocus by optimizing

; the vector focus displacement, df.

; df = 3-element offset [dx, dy, dz] from design focal point. Normally

; used as an input, but if /optimize is set, then df returns the

; displacement corresponding to best focus.

; RMSWFE = (output) RMS value of wavefront error.

; wfe_grating = WFE of grating due to imperfect polishing of substrate. NxN.

; wfe_rulings = WFE due to imperfect patterning of the rulings. NxN.

; wfe_fold = WFE of fold flat due to imperfect polishing on the part

; of the flat associated with spectral order m. NxN.

;MODIFICATION HISTORY:

; 2009-May-28 C. C. Kankelborg

; Essentially restarted from scratch, beginning with design parameters

; generated by the Octave program coordinate_xform.m and following

; the quantitative development in moses_wfe.pdf (see documentation/).

; 2009-May-30 CCK: added optimization, wfe_grating, wfe_rulings,

; wfe_fold, and N keywords.

; 2009-Jun-02 CCK: fixed bug where keyword N got lost under /optimize. This

; keyword is now handled much wfe_grating/wfe_rulings/wfe_fold. These are

; all a bit tricky since (1) they can’t be passed as arguments or keywords

; to mopt_badness and (2) moses_wfe is called by mopt_badness.

;==;

; F I G U R E O F M E R I T ;

;==;

function mopt_badness, df

common moses_opt, order, wavelength, WFE_MANUFACTURING, Nmesh

37

;parameters needed for moses_wfe, but not part of the optimization.

wfe = moses_wfe(order, lambda=wavelength, df=df, rmswfe=rmswfe, $

wfe_grating = WFE_MANUFACTURING, N=Nmesh)

return, rmswfe

end

;==;

; F O C U S O P T I M I Z A T I O N ;

;==;

pro moses_optimize, m, lambda=lambda, df_best=df_best, $

wfe=wfe, rmswfe=rmswfe, prior_wfe=prior_wfe, N=N

common moses_opt, order, wavelength, WFE_MANUFACTURING, Nmesh

;parameters needed for moses_wfe, but not part of the optimization.

order = m

wavelength = lambda

WFE_MANUFACTURING = prior_wfe

Nmesh = N

;Optimization:

df0 = [0.0, 0.0, 0.0] ;initial guess

df_best = amoeba(1e-8, FUNCTION_NAME = ’mopt_badness’, $

P0=df0, scale=[1,1,1], nmax=10000) ;options chosen for < 1 um precision.

wfe = moses_wfe(m, df=df_best, lambda=lambda, rmswfe=rmswfe, $

wfe_grating = WFE_MANUFACTURING, N=Nmesh)

end

;==;

; M A I N P R O G R A M ;

;==;

function moses_wfe, m, df=df, lambda=lambda, $

optimize=optimize, rmswfe = rmswfe, N=N, $

wfe_grating=wfe_grating, wfe_rulings=wfe_rulings, wfe_fold=wfe_fold

;Simulation parameters

if not keyword_set(N) then N = 256 ;Simulated mirror will be N x N.

if not keyword_set(lambda) then lambda = 304e-7

38

if keyword_set(df) then begin

if n_elements(df) ne 3 then message, ’Keyword df needs 3 elements!’

endif else df = [0, 0, 0]

prior_wfe = dblarr(N,N) ;zero unless wfe_* keywords set...

if keyword_set(wfe_grating) then prior_wfe += wfe_grating

if keyword_set(wfe_rulings) then prior_wfe += wfe_rulings

if keyword_set(wfe_fold) then prior_wfe += wfe_fold

;---;

; Optical Design parameters ;

; in "model coordinates" xyz, with the origin ;

; at the center of the grating. ;

;---;

;Grating:

R = 9480.00d ;radius of curvature

x0 = 9478.63d ;center of curvature, x

y0 = 0.00d ;center of curvature, y

z0 = -160.98d ;center of curvature, z

xG = 0d

yG = 0d

zG = 0d

d = 1.0d/950 ;groove spacing

;Fold flat:

xF = 2309.9d

yF = 0d

zF = -78.500d

;Spectral orders:

orders =[-1, 0, 1]

;Detectors at each spectral order:

yd = [-136.7d, 0.0d, 136.7d]

xd = [4734.1d, 4737.1d, 4734.1d]

zd = [-160.88d, -160.99d, -160.88d]

;Aperture stop (square)

stop_width = 80.0d

;---;

39

; WFE calculation ;

;---;

if keyword_set(optimize) then begin

print, ’determining and removing tip/tilt and defocus...’

;wfe -= fit_spherical_wave(wfe)

;wfe -= fit_spherical_wave(wfe)

moses_optimize, m, lambda=lambda, df_best=df, $

rmswfe=rmswfe, wfe=WFE, prior_wfe=prior_wfe, N=N

return, WFE

endif

;Process the input spectral order, m

ss = where(orders EQ m)

if ss[0] eq -1 then message,’Error: order m is not available.’

i = ss[0] ;The index of the correct order.

m = float(m) ;Let’s not have any integer arithmetic.

;Focal position, including optional offset

f = [xd[i], yd[i], zd[i]] + df

focal_length = norm(f)

;Primary mirror (grating) figure, x(y,z)

ones = replicate(1.0, N)

yz_linear = stop_width * (findgen(N)/(N-1.0) - 0.5)

;A linear y or z axis (same since primary is square) with N elements.

y = yz_linear # ones

z = ones # yz_linear

x = x0 - sqrt(R^2 - (y-y0)^2 - (z-z0)^2)

;WFE components (in waves)

WFE_I = -x/lambda ;propagation to grating surface.

WFE_G = m*y/d ;diffraction grating in spectral order m.

WFE_O = (sqrt((f[0]-x)^2 + (f[1]-y)^2 + (f[2]-z)^2) - focal_length)/lambda

;Careful, that’s letter O! Propagation from (x,y,z) to f.

;Note that I’ve subtracted out the focal length itself.

WFE = WFE_I + WFE_G + WFE_O + prior_wfe ;Total WFE

WFE -= mean(WFE) ;remove piston, which is physically meaningless.

40

rmswfe = sqrt(mean(WFE^2))

return, WFE

end

D.2 Source Code: moses ideal.pro

;NAME:

; moses_ideal

;PURPOSE:

; Simple emonstration of moses_wfe for ideal MOSES (as designed).

;CALLING SEQUENCE:

; .run moses_ideal

;MODIFICATION HISTORY:

; 2009-Jun-01 CCK

; 2009-Jun-02 CCK fixed WFE display bug.

N = 256 ;size of mesh

lambda = 303.8e-7 ;wavelength in mm (He II)

;Calculate system WFE at best focus for each order.

wfem = moses_wfe(-1, N=N, /optimize, lambda=lambda, rmswfe=rmswfem, df=dfm)

wfez = moses_wfe(0, N=N, /optimize, lambda=lambda, rmswfe=rmswfez, df=dfz)

wfep = moses_wfe(+1, N=N, /optimize, lambda=lambda, rmswfe=rmswfep, df=dfp)

;Visualize WFE in all 3 spectral orders.

set_plot,’ps’

device, /encapsulated, filename=’ideal_wfe.eps’, /color, bits=8, $

xsize=18, ysize=6 ;bounding box size in cm.

loadct, 4

;window, 0, xsize = 3*N, ysize = N

images = [[[wfem]], [[wfez]], [[wfep]]]

range=ceil(max(abs(images)))

;colorbar does not do well with uneven or non-integer ranges.

images = bytscl(images, min=-range, max=range)

!p.multi = [0,3,1] ;3 columns and 1 row of plots

plot_image, images[*,*,0], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

41

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

plot_image, images[*,*,1], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

plot_image, images[*,*,2], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

colorbar, range=[-range, range], color=0, /vertical, divisions = range, $

position = [0.94, 0.20, 0.96, 0.85]

;write_png, ’ideal_wfe_maps.png’, tvrd(/true)

device,/close

set_plot,’x’

print

print,’MOSES_IDEAL results’

print,’m rmswfe delta_x delta_y delta_z’

print,’-1:’,rmswfem,dfm

print,’ 0:’,rmswfez,dfz

print,’+1:’,rmswfep,dfp

print

;Calculate point spread functions

fratio = 9480.0/2.0/80.0 ;MOSES f-ratio (used for all 3 orders)

lambda *= 1e3 ;convert wavelength from mm to microns.

psfm = wfe2psf(wfem, fratio=fratio, lambda=lambda, xarr=xarr, dx=dx)

psfz = wfe2psf(wfez, fratio=fratio, lambda=lambda)

psfp = wfe2psf(wfep, fratio=fratio, lambda=lambda)

;3-panel EPS figure showing point spread functions

pix = 13.5 ;size of pixel in microns (Marconi/E2V spec)

set_plot,’ps’

device, /encapsulated, filename=’ideal_psf.eps’, /color, bits=8, $

xsize=18, ysize=6 ;bounding box size in cm.

;window, 1, xsize=1440, ysize=512

loadct, 0

!p.multi = [0,3,1] ;3 columns and 1 row of plots

plot_image, -psfm, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

plot_image, -psfz, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

42

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

plot_image, -psfp, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

device, /close

set_plot,’x’

end

D.3 Source Code: moses defocus.pro

;NAME:

; MOSES_DEFOCUS

;PURPOSE:

; Simulate a MOSES focus series.

;CALLING SEQUENCE:

; moses_defocus

;OPTIONAL KEYWORD INPUTS:

; save_file -- name of save file containing all the results. The default

; is ’moses_defocus.sav’.

; N -- size of square mesh (default 384)

; lambda -- wavelength in mm (default 303.8e-7, He II Ly alpha)

; Nfsteps -- number of focus steps (default 51)

; fstep -- focus step size in mm (default 0.25)

; wfe_mfg -- WFE due to manufacturing & alignment (waves)

; quiet -- if set, suppress prints & plots of useful information.

;ALGORITHM:

; First, the design WFEs and focal positions are calculated using moses_wfe

; with the /optimize option. Then, two independent methods are used to

; generate the wavefront error corresponding to defocus:

; (1) displacement of the focal position through keyword df to moses_wfe;

; (2) application of the general defocus function to the initial WFEs.

;MODIFICATION HISTORY:

; 2009-Jun-10 C. Kankelborg

; 2009-Jun-12 CCK, save file is now gzipped.

; 2009-Jul-06 CCK, commented out the gzip. It was not worth the time.

43

pro moses_defocus, N=N, lambda=lambda, Nfsteps=Nfsteps, fstep=fstep, $

wfe_mfg=wfe_mfg, save_file=save_file, quiet=quiet

;Simulation parameters

if not keyword_set(N) then N = 256+128 ;size of mesh

if not keyword_set(lambda) then lambda = 303.8e-7 ;wavelength in mm (He II)

if not keyword_set(Nfsteps) then Nfsteps = 51 ;number of focus steps

if not keyword_set(fstep) then fstep = 0.25 ;focus step size (mm)

if not keyword_set(save_file) then save_file = ’moses_defocus.sav’

aperture = 80 ;MOSES aperure diameter in mm

;Design detector positions [x,y,z] at each spectral order

;(based on moses_wfe.pro constants xd, yd, zd):

detm = [4734.1, -136.7, -160.88]

detz = [4737.1, 0.0, -160.99]

detp = [4734.1, 136.7, -160.88]

;Work out approximate unit vectors from grating center toward each focus.

;I could correct for exact focus positions using dfm/dfz/dfp, but

;it’s not worth it.

uvm = detm / norm(detm) ;unit vector toward m = -1

uvz = detz / norm(detz) ;unit vector toward m = 0

uvp = detp / norm(detp) ;unit vector toward m = +1

fratio = norm(detz) / aperture ;fratio is needed later by wfe2psf.

;Work out the WFE & location of design best focus.

wfem = moses_wfe(-1, N=N, /optimize, lambda=lambda, rmswfe=rmswfem, $

df=dfm, wfe_grating = wfe_mfg)

wfez = moses_wfe(0, N=N, /optimize, lambda=lambda, rmswfe=rmswfez, $

df=dfz, wfe_grating = wfe_mfg)

wfep = moses_wfe(+1, N=N, /optimize, lambda=lambda, rmswfe=rmswfep, $

df=dfp, wfe_grating = wfe_mfg)

;---

;Allocate arrays for WFE and PSF results (3 orders, 2 methods):

;---

wfems1 = fltarr(N, N, Nfsteps) ;WFE m = -1 image stack, method 1

wfezs1 = fltarr(N, N, Nfsteps) ;WFE m = 0 image stack, method 1

wfeps1 = fltarr(N, N, Nfsteps) ;WFE m = +1 image stack, method 1

44

;---

psfms1 = fltarr(N, N, Nfsteps) ;PSF m = -1 image stack, method 1

psfzs1 = fltarr(N, N, Nfsteps) ;PSF m = 0 image stack, method 1

psfps1 = fltarr(N, N, Nfsteps) ;PSF m = +1 image stack, method 1

;---

wfems2 = fltarr(N, N, Nfsteps) ;WFE m = -1 image stack, method 2

wfezs2 = fltarr(N, N, Nfsteps) ;WFE m = 0 image stack, method 2

wfeps2 = fltarr(N, N, Nfsteps) ;WFE m = -+ image stack, method 2

;---

psfms2 = fltarr(N, N, Nfsteps) ;PSF m = -1 image stack, method 2

psfzs2 = fltarr(N, N, Nfsteps) ;PSF m = 0 image stack, method 2

psfps2 = fltarr(N, N, Nfsteps) ;PSF m = +1 image stack, method 2

;---

rmswfems1 = fltarr(Nfsteps) ;RMS WFEs, m = -1

rmswfezs1 = fltarr(Nfsteps) ;RMS WFEs, m = 0

rmsWFEps1 = fltarr(Nfsteps) ;RMS WFEs, m = +1

;---

;Calculate WFE and PSF for all focus positions

fpositions = fstep*(findgen(Nfsteps) - 0.5*(Nfsteps-1)) ;focus positions

if not keyword_set(quiet) then window, 10, title=’PSF’, xsize=3*N, ysize=2*N

for i=0, Nfsteps-1 do begin

;Method 1

;m = -1

wfems1[*,*,i] = moses_wfe(-1, N=N, lambda=lambda, rmswfe=rmswfe, $

df=dfm+uvm*fpositions[i], wfe_grating = wfe_mfg)

rmswfems1[i] = rmswfe ;can’t do this directly in the keyword to moses_wfe,

;because IDL is stupid (doesn’t pass array elements by reference)!!!

psfms1[*,*,i] = wfe2psf(wfems1[*,*,i], fratio=fratio, lambda=lambda, $

xarr=xarr, dx=dx)

;m = 0

wfezs1[*,*,i] = moses_wfe(0, N=N, lambda=lambda, rmswfe=rmswfe, $

df=dfz+uvz*fpositions[i], wfe_grating = wfe_mfg)

rmswfezs1[i] = rmswfe ;can’t do this directly in the keyword to moses_wfe,

;because IDL is stupid (doesn’t pass array elements by reference)!!!

psfzs1[*,*,i] = wfe2psf(wfezs1[*,*,i], fratio=fratio, lambda=lambda, $

xarr=xarr, dx=dx)

;m = +1

45

wfeps1[*,*,i] = moses_wfe(+1, N=N, lambda=lambda, rmswfe=rmswfe, $

df=dfp+uvp*fpositions[i], wfe_grating = wfe_mfg)

rmswfeps1[i] = rmswfe ;can’t do this directly in the keyword to moses_wfe,

;because IDL is stupid (doesn’t pass array elements by reference)!!!

psfps1[*,*,i] = wfe2psf(wfeps1[*,*,i], fratio=fratio, lambda=lambda, $

xarr=xarr, dx=dx)

;Method 2 (much more streamlined!)

;m = -1

wfems2[*,*,i] = defocus(wfem, fpositions[i], fratio, lambda)

psfms2[*,*,i] = wfe2psf(wfems2[*,*,i], fratio=fratio, lambda=lambda)

;m = 0

wfezs2[*,*,i] = defocus(wfez, fpositions[i], fratio, lambda)

psfzs2[*,*,i] = wfe2psf(wfezs2[*,*,i], fratio=fratio, lambda=lambda)

;m = +1

wfeps2[*,*,i] = defocus(wfep, fpositions[i], fratio, lambda)

psfps2[*,*,i] = wfe2psf(wfeps2[*,*,i], fratio=fratio, lambda=lambda)

if not keyword_set(quiet) then begin

print, ’Completed focus position ’,i,’, defocus = ’,fpositions[i],’, mm.’

print, ’RMS WFE (m,z,p) = ’, rmswfems1[i], rmswfezs1[i], rmswfeps1[i]

print, ’displaying PSFs...’

tv, [[bytscl(psfms1[*,*,i]), bytscl(psfzs1[*,*,i]), bytscl(psfps1[*,*,i])],$

[bytscl(psfms2[*,*,i]), bytscl(psfzs2[*,*,i]), bytscl(psfps2[*,*,i])]]

endif

endfor

save, filename = save_file

;spawn, ’gzip -f ’ + save_file

end

D.4 Source Code: mdef analyze.pro

;NAME:

; mdef_analyze

;PURPOSE:

46

; Restore the results of moses_defocus (assumes default save filename), and

; produce images and plots to document the results.

;CALLING SEQUENCE:

; mdef_analyze

;MODIFICATION HISTORY:

; 2009-Jun-xx C. Kankelborg

; 2009-Jul-06 CCK commented out the gzip stuff (as in moses_defocus.pro).

pro mdef_analyze

;message,’Unzipping the save file...’,/informational

;spawn, ’gunzip -f moses_defocus.sav.gz’

message,’Restoring the save file...’,/informational

restore, ’moses_defocus.sav’

;message,’Rezipping the save file...’,/informational

;spawn, ’gzip -f moses_defocus.sav’

gamma = 0.5 ;contrast parameter

imfile = ’/tmp/mdef’ ;stem used for image filenames

;Work out rms spot radius (using method 2 results)

message,’Analyzing PSF images...’,/informational

rmsradm = fltarr(Nfsteps)

rmsradz = fltarr(Nfsteps)

rmsradp = fltarr(Nfsteps)

for i=0, Nfsteps-1 do begin

rmsradm[i] = psf2stats(psfms2[*,*,i], dx=dx)

rmsradz[i] = psf2stats(psfzs2[*,*,i], dx=dx)

rmsradp[i] = psf2stats(psfps2[*,*,i], dx=dx)

endfor

;RMS WFE PLOT

set_plot,’ps’

device, /encapsulated, filename=’mdef_rmswfe.eps’, /color, bits=8

plot, fpositions, rmswfems1, linestyle=0, psym=-7, title=’MOSES Focus (WFE)’, $

ytitle=’RMS wavefront error (waves)’, xtitle=’defocus (mm)’

oplot, fpositions, rmswfezs1, linestyle=0, psym=-4

oplot, fpositions, rmswfeps1, linestyle=0, psym=-1

legend,[’m = -1’,’m = 0’,’m = +1’], linestyle=[0,0,0], psym=[-7,-4,-1]

47

device,/close

set_plot,’x’

;RMS Spot Radius PLOT

set_plot,’ps’

device, /encapsulated, filename=’mdef_rmsrad.eps’, /color, bits=8

plot, fpositions, rmsradm, linestyle=0, psym=-7, title=’MOSES Focus (Spot Radius)’, $

ytitle=’RMS spot radius (mm)’, xtitle=’defocus (mm)’

oplot, fpositions, rmsradz, linestyle=0, psym=-4

oplot, fpositions, rmsradp, linestyle=0, psym=-1

;For comparison, what is the RMS spot radius of a pyramidal beam?

rmsrad_1sq = 1.0/sqrt(6.0) ;rms radius of a unit square

rmsrad_pyramid = rmsrad_1sq * abs(fpositions)/fratio

;rms radius of ideal geometrical beam (square cross-section)

oplot, fpositions, rmsrad_pyramid, linestyle=2, psym=-3

legend,[’m = -1’,’m = 0’,’m = +1’,’Ideal ray optics’], $

linestyle=[0,0,0,2], psym=[-7,-4,-1,-3], /bottom

device,/close

set_plot,’x’

;FOCUS MOVIE

message,’Processing image frames...’,/informational

set_plot,’z’ ;do this all in the z-buffer.

device, set_resolution = [3*N, 2*N]

for i=0, Nfsteps-1 do begin

image = [[bytscl(psfms1[*,*,i]^gamma), $

bytscl(psfzs1[*,*,i]^gamma), $

bytscl(psfps1[*,*,i]^gamma)],$

[bytscl(psfms2[*,*,i]^gamma), $

bytscl(psfzs2[*,*,i]^gamma), $

bytscl(psfps2[*,*,i]^gamma)]]

tv, image

legend = ’defocus = ’+string(fpositions[i],format=’(f+6.2)’)+’ mm’

xyouts, 3*N-4, 4, /device, legend, alignment=1.0

legend = ’gamma = ’+string(gamma,format=’(f+6.2)’)

xyouts, 3*N-4, 4+N, /device, legend, alignment=1.0

xyouts, 4, 4, /device, ’Method 1 (df keyword)’

xyouts, 4, 4+N, /device, ’Method 2 (defocus.pro)’

48

xyouts, N/2, 2*N-10, /device, ’m = -1’, alignment=0.5

xyouts, N/2+N, 2*N-10, /device, ’m = 0’, alignment=0.5

xyouts, N/2+2*N, 2*N-10, /device, ’m = +1’, alignment=0.5

filename = imfile+string(i,format=’(i03)’)+’.png’

write_png, filename, tvrd(0, 0, 3*N, 2*N)

endfor

message,’Converting images to movie mdef.m2v...’, /informational

spawn,’convert -quality 100 ’+imfile+’*.png ./mdef.m2v’

end

D.5 Source Code: moses test1.pro

;NAME:

; moses_test1

;PURPOSE:

; Simple demonstration of moses_wfe for MOSES with added astigmatism.

;CALLING SEQUENCE:

; .run moses_test1

;MODIFICATION HISTORY:

; 2009-Jun-02 CCK, based on moses_ideal.pro

N = 512 ;size of mesh (enlarged to keep PSF within field of view)

lambda = 303.8e-7 ;wavelength in mm (He II)

;Construct WFE array corresponding to

; x = (design sphere) + A*y*z,

;where x,y,z are in mm, and A = 1e-7 / mm.

coord = 80*(findgen(N)/(N-1) - 0.5) ;coordinate axis (y or z) on 80mm grating.

ones = replicate(1.0, N)

z = ones # coord ;y coordinates for entire grating surface

y = coord # ones ;x coordinates for entire grating surface

wfe_grating = 1e-7 * y * z * (2 / lambda)

;Calculate system WFE at best focus for each order.

wfem = moses_wfe(-1, N=N, /optimize, lambda=lambda, rmswfe=rmswfem, $

df=dfm, wfe_grating = wfe_grating)

49

wfez = moses_wfe(0, N=N, /optimize, lambda=lambda, rmswfe=rmswfez, $

df=dfz, wfe_grating = wfe_grating)

wfep = moses_wfe(+1, N=N, /optimize, lambda=lambda, rmswfe=rmswfep, $

df=dfp, wfe_grating = wfe_grating)

;Visualize WFE in all 3 spectral orders.

set_plot,’ps’

device, /encapsulated, filename=’test1_wfe.eps’, /color, bits=8, $

xsize=18, ysize=6 ;bounding box size in cm.

loadct, 4

;window, 0, xsize = 3*N, ysize = N

images = [[[wfem]], [[wfez]], [[wfep]]]

range=ceil(max(abs(images)))

;colorbar does not do well with uneven or non-integer ranges.

images = bytscl(images, min=-range, max=range)

!p.multi = [0,3,1] ;3 columns and 1 row of plots

plot_image, images[*,*,0], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

plot_image, images[*,*,1], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

plot_image, images[*,*,2], origin=[-40,-40], scale = 80.0/(N-1), charsize=1, $

/noscale, xtitle=’y (mm)’, ytitle=’z (mm)’

colorbar, range=[-range, range], color=0, /vertical, divisions = range, $

position = [0.94, 0.20, 0.96, 0.85]

;write_png, ’test1_wfe_maps.png’, tvrd(/true)

device,/close

set_plot,’x’

print

print,’MOSES_test1 results’

print,’m rmswfe delta_x delta_y delta_z’

print,’-1:’,rmswfem,dfm

print,’ 0:’,rmswfez,dfz

print,’+1:’,rmswfep,dfp

print

;Calculate point spread functions

fratio = 9480.0/2.0/80.0 ;MOSES f-ratio (used for all 3 orders)

50

lambda *= 1e3 ;convert wavelength from mm to microns.

psfm = wfe2psf(wfem, fratio=fratio, lambda=lambda, xarr=xarr, dx=dx)

psfz = wfe2psf(wfez, fratio=fratio, lambda=lambda)

psfp = wfe2psf(wfep, fratio=fratio, lambda=lambda)

;3-panel EPS figure showing point spread functions

pix = 13.5 ;size of pixel in microns (Marconi/E2V spec)

set_plot,’ps’

device, /encapsulated, filename=’test1_psf.eps’, /color, bits=8, $

xsize=18, ysize=6 ;bounding box size in cm.

;window, 1, xsize=1440, ysize=512

loadct, 0

!p.multi = [0,3,1] ;3 columns and 1 row of plots

plot_image, -psfm, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

plot_image, -psfz, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

plot_image, -psfp, origin=[xarr[0],xarr[0]], scale = dx, charsize=1, $

xtitle=’delta_y (microns)’, ytitle=’delta_z (microns)’

oplot, (pix/2)*[-1,-1,1,1,-1], (pix/2)*[-1,1,1,-1,-1] ;pixel outline

device, /close

set_plot,’x’

end

D.6 Source Code: moses test2.pro

;Simple MOSES focus series test

; % ssw_batch moses_test2 moses_test2.log /date

set_plot, ’z’ ;Prevent firing up any x-windows

message,’Calculating MOSES focus series...’, /info

moses_defocus, /quiet ;the /quiet feature eliminates real-time plotting to x.

message,’Producing plots and images...’, /info

51

mdef_analyze

end

D.7 Source Code: moses test3.pro

52

	Introduction
	MOSES Optical Design
	Ideal MOSES
	WFE Calculation
	Physical Interpretation of m

	Fourier Optics Model
	Implementation---General
	Implementation---MOSES

	Test 1: Astigmatism
	Test 2: Focus Series
	Test 3: One WFE Realization
	Coordinate transform
	Source Code: coordinate_xform.m

	Diffraction Theory
	WFEmodeling Library
	Source Code: psd2wfe.pro
	Source Code: wfe2psd.pro
	Source Code: mirror.pro
	Source Code: spiders.pro
	Source Code: fit_spherical_wave.pro
	Source Code: defocus.pro
	Source Code: wfe2psf.pro
	Source Code: psf2mtf.pro
	Source Code: psf2stats.pro
	Source Code: wfe2strehl.pro
	Source Code: wfe2fringes.pro

	MOSES Fourier Optics Codes
	Source Code: moses_wfe.pro
	Source Code: moses_ideal.pro
	Source Code: moses_defocus.pro
	Source Code: mdef_analyze.pro
	Source Code: moses_test1.pro
	Source Code: moses_test2.pro
	Source Code: moses_test3.pro

