Coordinates in Rebinned Images

C. Kankelborg, 2006 June 10

This note describes the change of pixel coordinates when an image is rebinned to lower resolution by some integer factor M.

Suppose we have an image \mathcal{I}, of $M N_{x} \times M N_{y}$ pixels, where M is an integer. The coordinates in \mathcal{I} are $\mathbf{r}=(x, y)$, which denote zero offset indices for image pixels. The center of the lower left-hand pixel is at $(0,0)$, and the center of the upper right-hand pixel is at $\left(M N_{x}-1, M N_{y}-1\right)$.

Now rebin the image to size $N_{x} \times N_{y}$, forming image \mathcal{I}^{\prime}, with its pixel coordinates \mathbf{r}^{\prime}. The center of the lower left-hand pixel in \mathcal{I}^{\prime} is at $\mathbf{r}^{\prime}=(0,0)$, and the upper right-hand pixel is at $\left(N_{x}-1, N_{y}-1\right)$. However, these do not correspond to the lower left and upper right pixels of the original image \mathcal{I}. The figure shows image coordinates for several example points. Note how rebinning has moved the origin. Integer coordinates in \mathcal{I}^{\prime} do not, in general, correspond to integer coordinates in \mathcal{I}. The two points at the corners (in black) are easy to work out. From these, it can be shown that

$$
\mathbf{r}=M \mathbf{r}^{\prime}+\frac{M}{2}-\frac{1}{2}, \quad \text { or } \quad \mathbf{r}^{\prime}=\frac{\mathbf{r}}{M}+\frac{1}{2 M}-\frac{1}{2}
$$

$\mathbf{r}_{0}=\mathbf{r}_{0}^{\prime}=(-1 / 2,-1 / 2)$

