SO FAR:
- Complex Impedance
- Passive & Active Filters
- Spectral (Fourier) Analysis

TODAY:
- Power Supplies
 - Transformers
 - Rectifiers
 - Filtering
 - Linear Regulators

NEXT TIME: START DIGITAL ELECTRONICS!

Today's objective is to start with 120V AC from the wall and end up with a well-regulated DC power source.

It is not unusual in physics experiments for power supply stability to be the limiting factor in a precision measurement.
First, step voltage down.

Transformer — Turn Ratio $N_2:N_1$

$$V_{\text{IN}} \quad N_1 \quad || \quad N_2 \quad R_{\text{LOAD}} (V_{\text{OUT}})$$

$$V_{\text{OUT}} = \frac{N_2}{N_1} V_{\text{IN}}$$

$$i_{\text{OUT}} = \frac{N_1}{N_2} i_{\text{IN}}$$

$$P_{\text{OUT}} = P_{\text{IN}} \, \text{(Ideality)}$$
SECOND, CONVERT FROM AC TO DC.

BRIDGE RECTIFIER

\[V_{\text{IN}} \]

\[R_{\text{LOAD}} \] (\(V_{\text{OUT}} \))

DIODE DROP = \(V_t \)

\[V_{\text{OUT}} \]

\[V_{\text{OUT}} = H \left[\frac{1}{4} \left(\frac{N_2}{N_1} V_{\text{IN}} \right) - V_t \right] \]

HEAVISIDE FUNCTION \(H(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases} \)

\[V_{\text{OUT MAX}} = \frac{N_2}{N_1} V_{\text{IN MAX}} - 2V_t \]
THIRD STEP: SMOOTH OUT THE BUMPS

FILTER CAPACITOR

\[V_{in} \]

\[@f \]

\[\frac{\Delta V}{\Delta t} \]

\[t \]

WE CALL THIS A BRUTE FORCE POWER SUPPLY. SIMILAR SUPPLIES ARE COMMON FOR MODEL RAILROAD EQUIPMENT AND OTHER APPLICATIONS THAT ARE INSENSITIVE TO NOISE.

RIPPLE VOLTAGE:

\[q = CV \]

\[V = iR \]

\[i = \frac{dq}{dt} = \frac{V}{R} = C \frac{dV}{dt} \]

So \[\frac{dV}{dt} = \frac{V}{RC} \] (THIS SHOULD LOOK FAMILIAR)

NOW, THE CAPACITOR DISCHARGES FROM \[V_{out, max} \] FOR A TIME OF \[\Delta t = T/2 = 1/2f \].

ASSUMING \[\Delta t \ll RC \],

\[\Delta V \approx \frac{dV}{dt} \Delta t = \frac{V_{out, max}}{2fRC} \]
LOAD AND LINE REGULATION

LOAD REGULATION:
"CHANGE IN OUTPUT VOLTAGE OR CURRENT FOR ANY LOAD CHANGE WITHIN RATINGS"

LINE REGULATION:
"CHANGE IN OUTPUT VOLTAGE OR CURRENT FOR ANY LINE CHANGE WITHIN RATINGS"

Q: WHAT ARE THE LOAD AND LINE REGULATION CHARACTERISTICS OF THE BFPS?
BFPS LOAD REGULATION:

\[\Delta V = \frac{V_{\text{out max}}}{2fR_{\text{load}}C} \]

The smaller \(R_{\text{load}} \), the greater the current loading the supply, and the greater the ripple voltage, the mean output voltage is roughly

\[\overline{V_{\text{out}}} = \left(1 - \frac{1}{4fR_{\text{load}}C}\right)V_{\text{out max}}. \]

BFPS LINE REGULATION:

\[V_{\text{out max}} = \frac{N_2}{N_1} V_{\text{in max}} - V_t \]

\[\Delta V_{\text{out}} = \frac{N_2}{N_1} \Delta V_{\text{in}} \]

So, the BFPS has essentially no line regulation. The output voltage is essentially proportional to line voltage.
SIMPLIFIED LINEAR REGULATOR

HOW IT WORKS:

- ZENER DIODE PROVIDES A VOLTAGE REFERENCE.
- OP AMP STABILIZES OUTPUT VOLTAGE AT
 \[
 \left[\frac{(R_1+R_2)}{R_2}\right] V_{REF}.
 \]
- PASS TRANSISTOR CAN SOURCE LOTS OF CURRENT, SO IT
 ACTS AS A LINE DRIVER FOR THE OP AMP.
- FILTER CAPACITOR SMOOTH OUT REMAINING RIPPLE.

ISSUES:

- INRUSH AT TURN-ON TIME CAN DAMAGE PASS TRANSISTOR.
- VARYING CURRENT THROUGH ZENER CAUSES SMALL FLUCTUATIONS
 OF REFERENCE VOLTAGE.

I.E.: WHILE CAPACITOR IS CHARGING INITIALLY.
CURRENT LIMITING
(PROTECTS THE PASS TRANSISTOR)

- R_{CL} is a small value, chosen so that $V = iR_{CL} = 0.7V$ for some maximum desired current. When this threshold is exceeded, the lower transistor turns on and reduces the base current to the pass transistor.

(CRIBBED FROM THE LM723 DATA SHEET)
Precision Voltage Reference

- This is intended to improve **line regulation**.
- The 723 regulator uses an amplifier and a current source to accomplish the same thing.