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Today 

Digital 
•  Numbering systems 
•  Digital circuits 
•  Logic States 
•  Boolean Logic Gates 
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Numbering Systems I 

Decimal - Counting in Base 10 and Converting to Decimal 
There are a total of 10 unique numbers, 0, 1, . . ., 9 

Thousands 

Hundreds Tens Ones 

Tenths 

3•103 + 1•102  + 4•101  + 1•100  + 5•10-1  

= 3,141.5 

3,141.5 
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Numbering Systems II 

Binary - Counting in Base 2   
There are a total of 2 unique numbers, 0 and 1 

      1101.12  

Eights         

Fours   Twos Ones 

Twoths 

1•23 + 1•22  + 0•21  + 1•20  + 1•2-1  

8     +    4     +    0      +   1       + 1/2 
=13.510 

} Decimal 

Binary 

and Converting to Decimal 
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Numbering Systems III 

Hexadecimal - Counting in Base 16  
There are a total of_______________?      

Hexadecimal - Counting in Base 16  
There are a total of 16 unique numbers: 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

9•163 + E•162  + 7•161  + B•160  + 8•16-1  =  40,571.510 

9E7B.816 

This method can be applied to any number base to 
convert to decimal equivalent (base 10). 

and 
Converting to 
Decimal 
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Base Conversion 

For small numbers, a 
conversion table is 
convenient and can be 
readily developed. 
 
Since most of the symbols 
look the same, it is critical 
that the base of the 
number be explicitly 
identified.   
 
(Octal is base 8)  

Decimal  Binary Octal Hex. 

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11
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Modulo 
Converting from Decimal to a different base is most 
easily accomplished using the modulo operation.  For 
example, convert 43510 to hexadecimal. 

43510/1610 = 2710 rmndr 310 316 LSD 

2710/1610 = 110 rmndr 1110 B16 

116 MSD 1/1610 = 010 rmndr 110 

Therefore 43510 = 1B316 

Check:   1*162 + 11*161 + 3*160 = 43510 

Dec to Hex 

Dec to Hex 

Dec to Hex 



Based with permission on lectures by John Getty 

MSU Laboratory Electronics II (PHSX 262) Lecture 7 Page 7 

Decimal to Binary 

Convert 17110 to binary: 
17110 /2 = 8510 r1  1  LSB 
8510 /2 = 4210 r1  1 
4210 /2 = 2110 r0  0 
2110 /2 = 1010 r1  1 
1010 /2 = 510 r0  0 
510 /2 = 210 r1  1 
210 /2 = 110 r0   0 
110 /2 = 010 r1  1  MSB 

 
 17110 = 101010112 
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Bits and Computer-ese 
Bit: 1 or 0  

•  High or Low; True or False;  Binary value  

Byte:  111111112, 3778, 25510, FF16 
•  8 bits, represented by two hexadecimal numbers 
•  32 and 64 bit processors are now common 
•  One byte is 256 units in decimal (0 to 255) 
•  Storage measure (4GByte RAM, 1TB Hard disk) 

Word:  2 Bytes typically (sometimes more)  
•  Word is integer number of bytes (16 or more bits) 
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Digital Signals and Noise 
“Immune” to noise 

•  All electronic signals are susceptible to noise, but digital 
signals are more tolerant to low “signal to noise ratios”. 

•  Information (a value) transmitted via an analog signal can lose 
accuracy due to additive noise.  Accuracy = SNR. 

•  Digital signals, if no bits are lost, transfer is 100% accurate up 
the number of bits (information) transmitted. 

•  Threshold restoration of digital data  
–  Example:  >0.5V => 1V (high)      <0.5V =>0V (low) 

•  Hysteretic processing decreases susceptibility to noise 
  Example for -1V to 1V binary signal:  

–  If current state is “1”, requires signals to drop to “-0.5” to switch to “-1” 
–  If current state is “-1”, requires signals to rise to “0.5” to switch to “1” 
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Noisy Analog Signal 
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Noisy Digital Signal and Hysteresis  
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Digital Signals 
Advantages 

•  Improved storage density 
• More powerful/accurate signal processing 

Disadvantages 
• We live in analog world 
•  A/D and D/A conversion introduces noise or 

distortion 
– Accurate to within ±1LSB (least significant bit 
– What is the difference between Noise and Distortion? 
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Logic States 
The on-off behavior of digital signals is used to 

represent individual bits. : 
•  0 = False, binary zero 
•  1 = True, binary one 

(This convention is referred to as positive logic.) 

J1
Key = Space

R1
1kohm

5V

VCC
Switch Closed

“Switch” is read as switch closed. “Switch” is 
read as “not” switch. So when the switch is 
open, “Switch” is true. Switch 

Pull-up 
resistor 
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Logic Thresholds and Levels 

Output Level - the output 
voltage from a logic device 
that can be expected for 
logic false and logic true 
values. 

Input Threshold - the 
boundary voltage at which 
a logic device changes its 
interpretation of an input 
signal either as a logical 
false or logical true. 

Input Output 

0 

1 

2 

3 

4 

5  = typical 
value 

High or 
True 

Low or 
False 

CMOS 
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Input Thresholds 
Input Output 

0 

1 

2 

3 

4 

5 

The upper block is the range of input 
voltages where it is guaranteed that the 
device recognizes the signal as a logical 
true. 

The lower block is the guaranteed range 
for logical false inputs. 

For input signals, the arrow represents 
the typical decision threshold.  
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Output Levels 
Input Output 
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Manufacturers guarantee that the output 
voltage representing a logical true will fall 
within the range indicated by the upper 
block.* 

The lower block is the guaranteed range 
for logical false output signals. 

For output signals, the arrow represents 
the typical voltages that are output for 
true and false signals. 

* - assuming all other specifications are satisfied 
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Noise Margin 
Input Output 

0 
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Noise Margin or noise immunity is defined as 
the difference between the guaranteed input 
threshold and output levels.   

High noise margin 

 
H H HM out inN V V= −

HoutV
Hin

V

Low noise margin 

 
L L LM in outN V V= −

Lin
V LoutV
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Some Standard Thresholds 

Input Output 
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Logic Functions 

Boolean Operators 
                Symbol 

Name  Algebraic    Schematic  Example 
 
 

George Boole 
 (1815-1864) 

NOT   Ā,  ', ¬       1'=0 

U1A

7405N

21

AND   •, ∩, ∧     1•0=0 
U2A

7409N

1

2
3

OR    +, ∪, ∨     1+0=1 
U3A

7432N

1

2
3
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AND Gate 

U2A

7409N

1

2
3A

B Q A B Q 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Truth Table Schematic symbol 

Q A B= ⋅
Algebraic example 
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OR Gate 

U3A7432N
1

2
3A

B Q A B Q 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Truth Table Schematic symbol 

Algebraic example 

Q A B= +
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NOT Gate 

0 1 
1 0 
Q A 

Truth Table 

U1A7405N
21A Q

Schematic symbol 

Q A=

Algebraic example 
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NAND Gate 

A B A•B Q 
0 0 0 1 
0 1 0 1 
1 0 0 1 
1 1 1 0 

Truth Table 

A B Q⋅ =
Algebraic example 

Schematic symbol 

B QA

U4A

7400N

1

2
3

U1A

7408N

1

2
3

B QA

U2A

7404N

21

NOT AND is created by inverting an AND gate 
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NOR Gate 

Truth Table 

B QA

U5A

7402N

2

3
1

A B Q+ =

A B A+B Q 
0 0 0 1 
0 1 1 0 
1 0 1 0 
1 1 1 0 

Schematic symbol 
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good resource: http://www.hanssummers.com/gates.html 
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+5V

+5V+5V
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Basic Boolean Identities 

( ) ( ) ( )A B C A B A C⋅ + = ⋅ + ⋅ Distributive Property 

,    ( )A A B A A A B A+ ⋅ = ⋅ + =Absorption Theorems 

A B A B A B A B+ = ⋅ ⋅ = + DeMorgan’s 
Theorems 

For a more complete list, see Table 8.3 in H&H page 491 

( ) ( )
( ) ( )

A B C A B C A B C
A B C A B C A B C
⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅
+ + = + + = + +

Associative 
Properties 

( )0,    1,    A A A A A A⋅ = + = =
1 0,    0 1= =

1 1,    0 ,    A A A A A A+ = + = + =
1 ,    0 0,    A A A A A A⋅ = ⋅ = ⋅ =

“Not” (inversion) 

Identity and Zero 


