Today

Displays, Memory and Microprocessors

- Review logic gates, discuss decoders, LED displays
- Flip flops and their applications
- Microprocessors (in 1 slide)
- Arduino microcontroller

Review of Logic Gates

Schematic symbol

AND

Algebraic example

$$
\begin{gathered}
Q=A \cdot B \\
Q=A+B \\
Q=\bar{A} \\
\overline{A \cdot B}=Q
\end{gathered}
$$

Page 2

Things made from gates:

Adder: A digital circuit that adds two binary numbers.
Multiplexer: Connects a "bus" (bundle of wires) to an "address" specified by a binary number.
Decoder: Uses logic to translate one pattern of bits to another, related pattern of bits.
Anything that looks like a TRUTH TABLE.

Binary Coded Decimal maps a four bit binary code directly to decimal numbers.

Great for using binary to provide the human interface, but is really inefficient binary "packing" so is rarely used internally in circuits.

Chips are available that perform the conversion binary $\rightarrow \mathrm{BCD}$-->binary.

A_{3}	A_{2}	A_{1}	A_{0}	Dec
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Undef
\ldots	\ldots	\ldots	\ldots	Undef
1	1	1	1	Undef

BCD Decoder-Driver

Logic Symbol

7-Segment LED Display ${ }^{\circ}$

Numerical Designations-Resultant Displays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			\square			L		\square	I			4		1	

7-Segment LED Display

Truth Table - BCD Decoder

N
N
츨

Truth Table															
Decimal or Function	Inputs							Outputs							Note
	$\overline{\text { LT }}$	$\overline{\mathrm{RBI}}$	A3	A2	A1	A0	$\overline{\text { Bl/RBO }}$	$\overline{\mathrm{a}}$	$\overline{\mathrm{b}}$	$\overline{\mathrm{c}}$	\bar{d}	$\bar{\theta}$	$\overline{7}$	$\overline{\mathrm{g}}$	
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	(Note 2)
1	H	X	L	L	L	H	H	H	L	L	H	H	H	H	(Note 2)
2	H	x	L	L	H	L	H	L	L	H	L	L	H	L	
3	H	X	L	L	H	H	H	L	L	L	L	H	H	L	
4	H	x	L	H	L	L	H	H	L	L	H	H	L	L	
5	H	x	L	H	L	H	H	L	H	L	L	H	L	L	
6	H	x	L	H	H	L	H	H	H	L	L	L	L	L	
7	H	x	L	H	H	H	H	L	L	L	H	H	H	H	
8	H	x	H	L	L	L	H	L	L	L	L	L	L	L	
9	H	x	H	L	L	H	H	L	L	L	H	H	L	L	
10	H	x	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	x	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	x	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	x	H	H	L	H	H	L	H	H	L	H	L	L	
14	H	x	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	X	H	H	H	H	H	H	H	H	H	H	H	H	
$\overline{\mathrm{Bl}}$	X	\times	X	X	X	X	L	H	H	H	H	H	H	H	(Note 3)
$\overline{\text { RBI }}$	H	L	L	L	L	L	L	H	H	H	H	H	H	H	(Note 4)
$\overline{L T}$	L	x	x	X	X	x	H	L	L	L	L	L	L	L	(Note 5)

Combinational versus Sequential

Combinational logic:
Output state of the circuit depends only on the present input states.

Can be described by a truth table.
Sequential Logic:
Output state depends on both the present input states and on previous history.
A Sequential Logic circuit has memory!

RS Flip-Flop

normally $\quad S^{\prime}=1 \quad$ and $\quad R^{\prime}=1$
then $Q_{1}=\overline{S^{\prime} \cdot Q_{0}^{\prime}}=\overline{Q_{0}^{\prime}}$
and $\quad Q_{1}^{\prime}=\overline{R^{\prime} \cdot Q_{0}}=\overline{Q_{0}}$
The state only changes when one of the inputs (R or S , but not both) are briefly toggled low (FALSE).

State Table for RS FF

State Table for RS FF

Inputs
What happens when we make
 this transition?

$\mathbf{R}^{\mathbf{\prime}}$	$\mathbf{S}^{\boldsymbol{\prime}}$	\mathbf{Q}	\mathbf{Q}^{\prime}
$\left.\begin{array}{\|c\|c\|c\|}\hline 1 & 1 & 1 / 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$			
0			

State Table for RS FF

Or either of

these? R'	S'	Q	Q'
$\rightarrow 1$	1	1/0	0/1
- 0	1	0	1
-1	0	1	0
0	0	1	1

Things you can make from

 flip-flopsRegister: Storage within a microprocessor for a "word" of 1 or more bytes.
Address pointer: A register that is used to specify an address to a multiplexer. The result is an "address bus".
Counter: A sequence of bits representing a binary number that increments (or decrements) in response to a clock signal.

Clocked Flip-Flop: Divide by 2

ToggleConnected Flip-Flop

4013 is a CMOS D-type clocked FF, positive edge triggered. This device from Multisym labels the reset pin as C
Timing Diagram for "clear."

Page 15

Microprocessors

MCS650x Internal Architecture
 2. ADRESSING CAPABILITY AND CONTROL OPTIONS VARY WTH

EACH OF THE MCS650X PRODUCTS

Arduino

Arduino

Arduino home page:
http://www.arduino.cc

Arduino language reference:
http://arduino.cc/en/Reference/
HomePage

Arduino examples:
http://arduino.cc/en/Tutorial/HomePage

