Today

Lecture 1 Physics 262 Laboratory Electronics II 1/18/11

- Go over course schedule and expectations
- Lecture
- Review circuit elements and linear circuits and their response to stimuli
- Frequency response and complex analysis of circuit elements
- Intro to complex voltage divider and Decibals
- Homework
- HW1:
- Horowitz and Hill: Exercises 1.1 (p.6), 1.2 (p.6), 1.3 (p. 6), 1.5 (p. 7), 1.10(p.13), 1.11(p.17), 1.12(p. 23), 1.15(P.27), and 1.17 (p. 33) (Mostly review)
- Email me from your preferred email address (counts as quiz point)
- Email me if you can't make project presentation time (Friday 4/29/11 2-4pm)
- All due Tuesday 1/25/11
- Homework problems are NOT turned in (but I advice you do it!)
- Reading in Horowitz and Hill
- Scan pages 1-28 in H\&H by 1/20/10 (make sure you understand these 261 concepts)
- Read pages 29-42 in H\&H by 1/20/10
- Lab this week
- Lab 1: Complex Impedance. Lab handout
- Prelab due Thursday at start of lab.

Introduction

Spring 2011 Physics 262 Laboratory Electronics II

- Instructor - Randy Babbitt

Physics Office: EPS 210, 994-6156 (EPS)
Spectrum Lab Office: 994-1797
Cell: 539-9751
Email: Babbitt_teaching2011@physics.montana.edu
Office hours -Tuesdays 1:00-2:00 and Thursdays 12:00-12:50 or by appointment (just email or call me)

- Teaching Assistant - Harsh Bhatkar

Physics office: EPS 226
Email:
Harsh [bhatkar@physics.montana.edul
Office hours: Thursdays 1-2 and Fridays 11-12

- Lectures: Tuesdays 9-9:50 in Roberts 121
- Lab: Thursdays 8:00-10:50 or 2:10-5:00pm in EPS 228
- Final: Monday May 2, 2010 12-2pm in Roberts 121

Requirements

Prerequisite:

Phsx 261, Laboratory Electronics I
Required texts:
"The Art of Electronics", Horowitz and Hill, $2^{\text {nd }}$ Edition
Reference text:
"The Analysis and Design of Linear Circuits", Thomas/Rosa
Two lab notebooks required:
Roaring Spring brand \#77108 5x5 quadrille lab books, sewn binding or equivalent
-Two notebooks are to be rotated with alternating labs

Web Site

- Course web site
www.physics.montana.edu/faculty/babbitt/Physics262/phsx262.html
- Homework and Reading Assignments
- Schedule and Important Dates
- Lab Instructions
- Handouts
- Project Description, write ups, and due dates.
- Lectures and Lecture Notes

Course Policies

- Laboratory exercises are a critical part of this course
- If you must miss a lab, you must schedule makeup time IN ADVANCE
- You must get 50% or better on all labs to pass course
- HW1: Send me your email address (via my email address)
- So I can contact you with additional course information and schedule/assignment/due date changes.
- Check web often
- Important Date/Schedule/Assignment changes and hints on web
- Lab Notebooks due in Friday 10am one week after lab.
- Will be returned next Tuesday in class or in lab on Thursday.
- A Late Lab Notebook will have 20\% penalty subtracted.
- Ethical behavior is expected
- Sign and return cheating policy
- Individual lab write-ups based on two person lab teams.
- All other work is individual, unless specifically stated.

Homework and Quizzes

- Homework "due" each Tuesday
- Homework is NOT turned in.
- Due date reflects day a quiz or exam may be given that has similar problems on it.
- You can work together on homework.
- Ask questions in lab and office hours.
- Quizzes are quasi-weekly Short quiz at end of class/beginning of lab
- Quizzes are easy if you do the homework problems (tightly based on HW problems)
- Quizzes are open book/notes and your HW (no copies)

Grading

Evaluation Method Weight (\%)
Lab Journal 45
Final Project 15
Quizzes/Worksheets 15
Final Exam 25

Laboratory Exercises

- Pre-Lab exercises (up to 20% of lab grade)
- Pre-Lab and Lab exercises will be handed out during Tuesday lecture
- Pre-lab due at start of lab on Thursday
- Pre-lab will be checked by TA at start of lab.
- It is your responsibility to make sure he checks you pre-lab at start of lab.
- Lab write-ups (45\% of course grade)
- Use two lab books (turn in alternating weeks, see lab schedule)
- You must get 50\% on ALL labs to pass course.
- Lab write-up format and scoring rubric: See lecture from first lab
- Work in pairs (but separate lab notebooks/write-ups)
- Record your combined work in both your lab books
- Division of labor is a good thing. Shows good lab skills.
- HOWEVER, you must understand the work done by your partner.
- Okay to copy partner's data/graphs,
but not their analysis/conclusions.
- Your conclusions must be your own, in your own words.

Semester Project

- Several weeks devoted to the project (15\% of course grade)
- Project incorporates many concepts/activities of regular lab exercises.
- Common problem but with different approaches
- Developing a laser light show circuit driver
- Use a single one of your lab notebooks for project (see lab schedule)
- Work in pairs (but separate lab notebooks/write-ups)
- Record your work in both your lab books
- Division of labor is a good thing. Shows good lab skills.
- Record joint work in both of your lab books.
- Okay to copy partner's data/charts but not their reduction/conclusions from data.
- Reference others work with proper acknowledgement in your lab book
- Tape printed/copied pages neatly into your journal as needed
- No loose papers. No loose edges. Tape all four corners. Okay to tape rotated.
- Project presentation time is a public light show driven by your circuits
- Tentatively Friday April 29, 2011 2:00PM-4:00pm
- You must email me by $1 / 25 / 10$ if you can't make this presentation time!!!!!
- More details later and on web site.

Resistors

Resister constraint independent of DC or AC circuit

- Voltage changes instantaneously with current

Resister provides resistance to current flow

- Introduces instant voltage drop in response to current

Capacitors

- Capacitor response depends on changes in voltage
- Capacitor reacts to a voltage change with current
- At DC, the capacitor looks like an open circuit.

$$
\text { if } d v_{c}(t) / d t=0 \text { then } i_{c}(t)=0
$$

- Capacitor voltage cannot change instantaneously

$$
\text { if } d v_{c}(t) / d t=\infty \text { then } i_{c}(t)=\infty
$$

Inductors

$$
\begin{array}{ll}
v_{L}(t)=L \frac{d i_{L}(t)}{d t} & L_{\text {series }}=L_{1}+L_{2} \\
\frac{1}{L_{\text {parallel }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}
\end{array}
$$

- Inductor response depends on changes in current
- Inductor reacts to a current change with voltage
- At DC, the inductor looks like a short circuit.

$$
\text { if } d i_{L}(t) / d t=0 \text { then } v_{L}(t)=0
$$

- Inductor current cannot change instantaneously

$$
\text { if } d i_{c}(t) / d t=\infty \text { then } v_{c}(t)=\infty
$$

RC Circuit

General RC Response

(Natural and Forced Responses)

Response to step function voltage from $\mathrm{V}=0$ to $\mathrm{V}=\mathrm{V}_{0}$ at $t=t_{0}$

$$
v_{C}(t)=\left[v_{s}\left(t<t_{0}\right)-v_{s}\left(t>t_{0}\right)\right] e^{-t / R C}+v_{s}\left(t>t_{0}\right)
$$

$$
\begin{aligned}
& \text { Let's analyze } \\
& \text { RLC Circuit } \\
& v_{S}(t)=v_{R}(t)+v_{L}(t)+v_{C}(t) \\
& v_{R}(t)=R C \frac{d v_{C}(t)}{d t} \quad v_{L}(t)=L \frac{d i_{L}(t)}{d t} \quad i_{C} \\
& v_{L}(t)=L \frac{d}{d t}\left(C \frac{d v_{C}(t)}{d t}\right)=L C \frac{d^{2} v_{C}(t)}{d t^{2}} \\
& v_{S}(t)=L C \frac{d^{2} v_{C}(t)}{d v^{2}}+R C \frac{d v_{C}(t)}{d t}+v_{C}(t) \\
& \bullet \quad \text { THERE MUST BE A BETTER WAY!!!!! }
\end{aligned}
$$

Ordinary Differential Equation Solutions to Circuit Response

Linear Circuits

- In a linear circuit, the response, $O(t)$ to a sum of inputs, $A(t) \&$ $B(t)$, is the sum of the individual responses
-IF $\quad A_{\text {in }}(t)=>O_{A}(t) \quad B_{i n}(t)=>O_{B}(t)$
- THEN $A_{\text {in }}(t)+B_{i n}(t)=>O_{A}(t)+O_{B}(t)$
- In a linear circuit, if the input is a sinewave at frequency f, the output will also be sinusoidal at frequency f

The phase and amplitude of the output may vary, but not the frequency.

- Any input can be decomposed into a sum of sinusoidal inputs, whose responses can be determined in a linear circuit analysis, and the output is the sum of these sinusoidal responses.

Frequency Decomposition is Fourier Analysis

Complex Representation of Voltages and Currents

$$
\begin{aligned}
V(t) & =V(\omega) \cos (2 \pi f t+\varphi(\omega)) \quad \begin{array}{l}
\text { sinusoidala innuts, but we can } \\
\text { analyze them one at a time. }
\end{array} \\
& =V(\omega) \cos (\omega t+\varphi(\omega)) \quad \\
& =\operatorname{Re}\{V(\omega) \cos (\omega t+\varphi)+j V(\omega) \sin (\omega t+\varphi(\omega))\} \\
& =\operatorname{Re}\{V(\omega) \exp (j(\omega t+\varphi(\omega)))\} \\
& =\operatorname{Re}\left\{V(\omega) e^{j \varphi(\omega)} \mathrm{e}^{j \omega t}\right\} \\
& =\operatorname{Re}\left\{\tilde{V}(\omega) \mathrm{e}^{j \omega t}\right\} \quad \frac{\text { complex Representation of } \mathrm{V}(\mathrm{t})}{\tilde{V}(\omega)=V(\omega) e^{j \varphi(\omega)}}
\end{aligned}
$$

Complex Representation of Voltages and Currents

$$
\tilde{V}(\omega)=V(\omega) e^{j \varphi(\omega)}
$$

The real and imaginary parts represent the cosine and sine components of the voltage

$$
\begin{aligned}
V(t) & =\operatorname{Re}\left\{\tilde{V}(\omega) \mathrm{e}^{j \omega t}\right\} \\
& =\operatorname{Re}\{\tilde{V}(\omega)\} \cos (\omega t)-\operatorname{Im}\{\tilde{V}(\omega)\} \sin (\omega t)
\end{aligned}
$$

Current also becomes complex

$$
\begin{aligned}
i(t) & =\operatorname{Re}\left\{\tilde{i}(\omega) \mathrm{e}^{j \omega t}\right\} \\
& =\operatorname{Re}\{\tilde{i}(\omega)\} \cos (\omega t)-\operatorname{Im}\{\tilde{i}(\omega)\} \sin (\omega t)
\end{aligned}
$$

Useful relationship

If you three complex numbers represented as:

$$
\begin{aligned}
& \tilde{A}=A e^{j \varphi_{A}} \\
& \tilde{B}=B e^{j \varphi_{B}} \\
& \tilde{X}=X e^{j \varphi_{X}}
\end{aligned}
$$

Then if

$$
\tilde{X}=\tilde{A} \tilde{B}
$$

The magnitudes and phases are related by

$$
X=A B \quad \varphi_{X}=\varphi_{A}+\varphi_{B}
$$

Impedance of Capacitor

$$
\begin{aligned}
V(t) & =\operatorname{Re}\left\{\tilde{V}(\omega) \mathrm{e}^{j \omega t}\right\} \quad \text { For } \mathrm{a} \\
& =V(\omega) \cos (\omega t+\varphi) \\
i(t) & =C \frac{d V(t)}{d t} \\
& =-\omega C V(\omega) \sin (\omega t+\varphi) \\
& =\operatorname{Re}\left\{\frac{V(\omega) e^{j \varphi} \mathrm{e}^{j \omega t}}{(1 / j \omega C)}\right\} \\
& =\operatorname{Re}\left\{\frac{\tilde{V}(\omega) \mathrm{e}^{j \omega t}}{Z_{C}(\omega)}\right\}
\end{aligned}
$$

For a sinusoidal input

If $i(t)=\operatorname{Re}\left\{\tilde{i}(\omega) \mathrm{e}^{j \omega t}\right\}$
then $\tilde{i}(\omega)=\frac{\tilde{V}(\omega)}{Z_{C}(\omega)}$
where

$$
Z_{C}(\omega)=\frac{1}{j \omega C}=\frac{1}{\omega C} e^{-i(\pi / 2)}
$$

Impedance and Ohm's Law

Resistor
$Z_{R}(\omega)=R$

Capacitor

$$
Z_{C}(\omega)=\frac{1}{j \omega C}
$$

Inductor

$$
Z_{L}(\omega)=j \omega L
$$

Impedance is the proportionality factor relating the complex voltage across an element to the complex current through the element.

$$
\tilde{i}(\omega)=\frac{\tilde{V}(\omega)}{Z(\omega)}
$$

$$
\tilde{V}(\omega)=\tilde{i}(\omega) Z(\omega)
$$

Devices in Series and Parallel

$$
\mathrm{Z}_{\text {Series }}=\mathrm{Z}_{1}+\mathrm{Z}_{2}
$$

$$
\frac{1}{\mathrm{Z}_{\text {Parallel }}}=\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}
$$

Impedance of ideal components in the Frequency Domain on Log-Log Plots

$$
\begin{aligned}
& Z_{C}(\omega)=\frac{1}{j \omega C} \\
& Z_{R}(\omega)=R \\
& Z_{L}(\omega)=j \omega L \\
& \text { Complete set of plots: } \\
& \text { - Log-log gain plot } \\
& \text { - Log-Lin phase plot }
\end{aligned}
$$

Simple Voltage Divider

Gain (or attenuation)

$$
G=\left|\frac{V_{\text {out }}}{V_{s}}\right|=\left(\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

Passive Filter: Generalized Voltage Divider

$$
\tilde{i}(\omega)=\left(\frac{\tilde{V}_{s}(\omega)}{Z_{1}(\omega)+Z_{2}(\omega)}\right)=\left(\frac{\tilde{V}_{s}(\omega)-\tilde{V}_{\text {out }}(\omega)}{Z_{1}(\omega)}\right)
$$

Output Voltage

$$
\begin{gathered}
\tilde{V}_{\text {out }}(\omega)=\left(\frac{Z_{2}(\omega)}{Z_{1}(\omega)+Z_{2}(\omega)}\right) \tilde{V}_{s}(\omega) \\
\text { Transfer Function } \tilde{T}(\omega) \\
\text { a.k.a } \tilde{T}(f) \quad f=\omega /(2 \pi)
\end{gathered}
$$

Gain $\tilde{G}(\omega)=|\tilde{T}(\omega)|=\left|\frac{\tilde{V}_{\text {out }}(\omega)}{\tilde{V}_{s}(\omega)}\right|=\left(\frac{\left|Z_{2}(\omega)\right|}{\left|Z_{1}(\omega)+Z_{2}(\omega)\right|}\right)$

Measuring an unknown $\mathrm{Z}(\omega)$

Can also write current as

$$
\tilde{i}(\omega)=\left(\frac{\tilde{V}_{\text {out }}(\omega)}{Z_{2}(\omega)}\right)=\left(\frac{\tilde{V}_{s}(\omega)-\tilde{V}_{\text {out }}(\omega)}{Z_{1}(\omega)}\right)
$$

Which can be rewritten as

$$
Z_{2}(\omega)=\left(\frac{\tilde{V}_{\text {out }}(\omega) Z_{1}(\omega)}{\tilde{V}_{s}(\omega)-\tilde{V}_{\text {out }}(\omega)}\right)
$$

If Z_{1} is known,
by measuring source and output voltage, complex impedance Z_{2} can be determined.

$$
\text { => Lab } 1
$$

Logarithmic Nomenclature

Decibel:

$$
d B=20 \log _{10}\left|\frac{V}{V_{0}}\right|=10 \log _{10}\left|\frac{P}{P_{0}}\right|
$$

Voltage Factor	Power Factor		Voltage Factor		
1		1		0	
$\sqrt{2}$	$1 / \sqrt{2}$	2	$1 / 2$	3	-3
2	$1 / 2$	4	4	6	-6
10	$1 / 10$	100	$1 / 100$	20	-20
20	$1 / 20$	400	$1 / 400$	26	-26
100	$1 / 100$	10000	.0001	40	-40

