Today

2/1/11 Lecture 3

- Higher Order Active Filters
- Cascaded Filters and Higher Order Filter Response
- VCVS filter design
- Butterworth Active Filters
- Design
- Performance
- Homework
- See next slide
- Reading
- H\&H Ed 2 268-276
- Lab this week
- Lab 2
- Do pre-lab of lab 2 BEFORE lab on Thursday
- Lab 1 and 2a due Friday at 10am
- Quiz

Homework

Due 2/8/11 HW3

1. Calculate the complex transfer functions for the two active filters on the next slide. Write expression for the magnitudes of their gains and phases as functions of frequency. What are the cut-off (3dB) frequencies of the two filters? What are their gains at zero frequency? What are the phase shifts of their outputs (relative to the inputs) at very low and very high frequencies?
2. Design a 2- pole Butterworth low pass filter with cut-off frequency $\sim 30 \mathrm{kHz}$.

Rest of HW delayed until next time

1. What is the formula for its gain as a function of frequency? What is its attenuation (in dB) at $\mathrm{f}=3 \mathrm{f}_{\mathrm{c}}$?
2. Design a 4- pole Butterworth high pass filter with cut-off frequency $\sim 60 \mathrm{kHz}$. What is the formula for its gain as a function of frequency? What is its attenuation (in $d B$) at $f=f_{c} / 2$?

$1^{\text {st }}$ Order Active Filters

INVERTING NON-INVERTING

Cascaded Filters

Cascaded filters multiply to give total transfer function $T(f)=T_{1}(f) T_{2}(f) T_{3}(f) \ldots$

Cascaded passive filters increase the order of the total filter. Number of cascaded FIRST order filters $=$ filter order

$$
\left|\tilde{T}_{\text {oocl } l n}(f)\right|=\left(\frac{1}{\sqrt{1+\left(f / f_{c}\right)^{2}}}\right)^{n} \approx\left(\frac{1}{\left(f / f_{c}\right)^{n}}\right) \text { for } f \gg f_{c}
$$

|Voltage Slope in stopband| = order of filter
Cascaded first order filters have weak knees.

$$
\left|\tilde{T}_{\text {tooll } _n}\left(f_{c}\right)\right|=\left(\frac{1}{\sqrt{2}}\right)^{n}
$$

Each cascaded passive filter's loads previous section.

- Degrades response

Desired Low-Pass Filter Response Order $=$ | Slope in log-log plot |

Near Ideal Low Pass Filters
(with Gain =1)

LPF with different roll-off rates

Desired High-Pass Filter Response

Order = | Slope in log-log plot |
Near Ideal High Pass Filters

HPF with different roll-off rates

Cascaded Active Filters

Cascaded passive filters increase the order of the total filter.
Same is true for active filters
Each cascaded passive filter's loads previous section.
Not true with active filters

- OpAmp has low current input => High input impedance
- OpAmp provides lots of current => Low output impedance

Cascaded first order filters have weak knees.
True with active filters
But...
By crafting filter designs in cascaded active filters

- Sharper knees, better time response, OR flatter phase response

Sallen-Key $2^{\text {nd }}$ Order Low-Pass Filter

The roll-off rate for a two-pole ($2^{\text {nd }}$ order) filter is
20 decades/decade in Voltage OR -40 dB/decade in POWER.

Design of $2^{\text {nd }}$ Order Active Filters

All the $2^{\text {nd }}$ order active filter circuits have the same basic design

- Frequency selective RC circuit can be
- Band-pass (see H\&H Figure 5.16)
- Low-pass

- High-pass

Higher order (>2) active filters are cascaded $\mathbf{2}^{\text {nd }}$ order circuits

- Built up by cascading basic filter circuits: $\mathrm{V}_{\text {out_previous }}=>\mathrm{V}_{\text {in_next }}$
- Only one VCVS and one op-amp is needed per every two orders

$2^{\text {nd }}$ Order Butterworth Design

1-stage (2-pole) filter design:

	Butterworth	Bessel	
Poles	K	f_{n}	K
2	1.59	1.27	1.27

Start with desire \boldsymbol{f}_{c}
Butterworth: RC=1/(2 $\left.2 f_{c}\right)$ and $R_{a}=(K-1) R_{b}$

Typically $\mathrm{R}_{\mathrm{b}}=\mathrm{R}$ in RC
R is typically $\mathbf{1 0 - 1 0 0 K}$ ohm.
(not hard rule)

Higher Order Butterworth Design

VCVS Low-Pass Filter Design:

f_{c} is desired 3 dB frequency of total n-pole filter
Poles
2
4

6

Butterworth
Stage (n)
1
1
2

1
2
3

1.59
1.15
2.24
1.07
1.59
2.48

Butterworth:
RC circuit is the same for all stages (Determined by desired f_{c})
Only the gain changes for each stage

$$
R C=1 /\left(2 \pi f_{c}\right) \quad \text { and } \quad R_{a}=\left(K_{n}-1\right) R_{b}
$$

Typically gains increase down the line to avoid dynamic range issues
Total Gain of multi-stage filter = product of the K_{n} 's
For high pass filter: Same design table except:
Use high pass VCVS
Use $1 / f_{n}$ to determine $R C$

$4^{\text {th }}$ Order Butterworth

2-stage (4-pole) Filter designs:

	Butterworth		Bessel	
Poles	Stage(n)	K_{n}	f_{n}	K_{n}
4	1	1.15	1.43	1.08
	2	2.24	1.61	1.76

Butterworth:

$$
\begin{aligned}
& \mathbf{R}_{1} \mathbf{C}_{1}=\mathbf{R}_{2} \mathbf{C}_{2}=1 /\left(2 \pi \mathrm{f}_{\mathrm{c}}\right) \\
& \mathbf{R}_{\mathrm{a} 1}=\left(\mathrm{K}_{1}-1\right) \mathrm{R}_{\mathrm{b} 1}=(1.15-1) \mathrm{R}_{\mathrm{b} 1} \\
& \mathbf{R}_{\mathrm{a} 2}=\left(\mathrm{K}_{2}-\mathbb{1}\right) \mathrm{R}_{\mathrm{b} 1}=(2.24-1) \mathrm{R}_{\mathrm{b} 2}
\end{aligned}
$$

Butterworth Response

Butterworth High Pass Filter Response

Same design table except:

Review Butterworth Design

