Today

2/8/11 Lecture 4

Higher Order Active Filters

- Butterworth Active Filters
 - Design
 - Performance
- Other Higher Order Filters
 - Butterworth, Bessel, Chebyshev
 - Advantages and Disadvantages
 - Frequency and Temporal Characteristics
- Homework
 - See next slide
- Reading
 - H&H Ed 2 268-276
- Lab this week
 - Lab 3
 - Do pre-lab of Lab 3 BEFORE lab on Thursday, TA check at start
 - Lab 2b due this Friday at 10am
- Quiz

Homework

Due 2/15/11 HW4

- Design a 2- pole Butterworth low pass filter with cut-off frequency ~60kHz. What is the formula for its gain as a function of frequency? What is its attenuation (in dB) at f=3f_c?
- Design a 4- pole Butterworth high pass filter with cut-off frequency ~30kHz. What is the formula for its gain as a function of frequency? What is its attenuation (in dB) at f=f_c/2?
- 3. Design a 4- pole Bessel low pass filter with cut-off frequency ~30kHz.

Design of 2nd Order Active Filters

All the 2nd order active filter circuits have the same basic design

- Frequency selective RC circuit can be
 - Band-pass (see H&H Figure 5.16)

Higher order (>2) active filters are cascaded 2nd order circuits

- Built up by cascading basic filter circuits: V_{out previous} => V_{in next}
- Only one VCVS and one op-amp is needed per every two orders

2nd Order Butterworth Design

Higher Order Butterworth LPF Design

Typically gains increase down the line to avoid dynamic range issues Total Gain of multi-stage filter = product of the K_n 's

For high pass filter: Same design table except: Use high pass VCVS Use 1/f_n to determine RC

4th Order Butterworth

 $\leq R_{a1} = (K_1 - 1)R_{b1}$

 $\mathbf{R}_1 = \mathbf{R}_{b1} \quad \mathbf{R}_2 = \mathbf{R}_{b2}$

 $\leq R_{b1}$

 $R_{a2} = (K_2 - 1)R_{b2}$

 \mathbf{R}_{b2}

Butterworth High Pass Filter Response

Temporal step response of Butterworth filters (orders = 2, 3, 4, 5 and 10)

Review Butterworth Design

Butterworth and Bessel Design

VCVS Low-Pass Filter Design: f _c is desired 3dB frequency of total n-pole filter	Poles 2	Butterworth K 1.59	Bess f _n 1.27	sel 1.
	4	1.15	1.43	1.
6 – pole Active Filter:		2.24	1.61	1.
Frequency selective	6	1.07	1.61	1.0
Vin RC circuit selective RC circuit	V	1.59	1.69	1.
$= \qquad \qquad$	$\rightarrow \mathbf{V}_{out}$	2.48	1.91	2.
=	R_{b}			
Butterworth:	-			

RC circuit is the same for all stages Only the gain changes for each stage $RC=1/(2\pi f_c)$ and $R_a=(K_n - 1)R_b$

Bessel:

RC circuit and gain change for each stage. $RC=1/(2\pi f_n f_c)$ and $R_a=(K_n - 1)R_b$

Κ

1.27

1.08

1.76

1.04

1.36

2.02

4th Order Butterworth versus Bessel

4

2-stage (4-pole) Filter designs:

P		44	0			rt	h	
D	u	L	C	VV	U	IL		

 $R_1C_1 = R_2C_2 = 1/(2\pi f_c)$ $R_{a1} = (K_1 - 1)R_{b1} = (1.15 - 1)R_{b1}$ $R_{a2} = (K_2 - 1)R_{b1} = (2.24 - 1)R_{b2}$ Bessel:

 $\begin{aligned} R_1 C_1 &= 1/(2\pi f_1 f_c) = 1/(2\pi (1.43) f_c) \\ R_2 C_2 &= 1/(2\pi f_2 f_c) = 1/(2\pi (1.61) f_c) \\ R_{a1} &= (K_1 - 1) R_{b1} = (1.08 - 1) R_{b1} \\ R_{a2} &= (K_2 - 1) R_{b1} = (1.76 - 1) R_{b2} \end{aligned}$

Poles Stage(n)

2

Bessel

K_n

1.08

1.76

f_n

1.43

1.61

Butterworth

K_n

1.15

2.24

Higher Order Active Filter Circuits

The Butterworth, Chebyshev, and Bessel are active VCVS filter designs

- Made up of resistors, capacitors, and op-amps
- Each has its advantages and disadvantages (next slide)

Advantages of all high order active filters

- High Z_{in} and low Z_{out} mean good isolation of source and load
- Smaller number of parts and less expensive than inductors at low f
- Ease of adjustability over a wide frequency range
- Small spread of parts values
- Not a demanding use of the op-amps capabilities
 - Such as slew rate, bandwidth, and output impedance
- Op-amp provides gain
- Ability to make high-Q filters (sharp responses)

Disadvantages of active filters

- Sensitive to component values (a drawback of these circuits)
- Requires dc power supply (Both positive and negative)
- Limited ultimately by frequency response of op-amp.

Butterworth, Bessel, and Chebyshev Filters

Different filter designs to meet different filtering needs.

Butterworth filter f_c is -3dB point $f_c = \frac{1}{2\pi RC}$ GOOD - Maximally flat in passband BAD - Poor phase (highly non-linear phase response with frequency) BAD - Poor step time response (overshoot) – Bessel filter f_c is -3dB point $f_c = \frac{1}{2\pi f RC}$ GOOD - Smooth time response (Critically damped step response) BAD - Flat phase response (linear phase shift with freq) BAD - Slow roll off at f_c Chebyshev – Chebyshev filter f_c is end of pass band (not -3dB point) GOOD- Sharp initial roll-off at f_c Bessel Still falls with slope = order at high *f* GOOD - Similar design rules to Bessel BAD – Ripple in passband Butterworth 0.5dB and 2.0dB ripple versions BAD - Poor phase response BAD – Poor step response (overshoot) f_c

