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Today
2/15/11  Lecture 5
Fourier Series

• Time-Frequency Decomposition/Superposition
• Fourier Components (Ex. Square wave)
• Filtering
• Spectrum Analysis

– Windowing
– Fast Fourier Transform
– Sweep Frequency Analyzer

Homework: (due next Tuesday)
1) Write down the expected powers and dBVs for the 3rd harmonic of all four functions in the lab if 

they were 2 Vpp functions (versus 1Vpp functions).
2) For a square wave of period 300 microseconds that goes from -1 volts to +1 volts into 50 ohms, 

what are the frequencies and powers in the 4 strongest frequency components?  Does it matter 
how square wave is centered in time (i.e. odd or even with respect to t=0)?

3) How much power in watts is dissipated into a 50 ohm resistor by a -13dBV signal?
4) What is the ratio of the powers and the voltages of a -27dBV signal and a -33dBV signal?

Reading
• See Prelab
• Horowitz and Hill 2nd Ed., pages 1025-1038.
• Optional:  see references at end of lecture.

Lab
Fourier Analysis
Do prelab before lab starts.
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Fourier’s Theorem
French mathematician Joseph Fourier 

(1768-1830), discovered that he could 
represent any real functions with a 
series of weighted sines and cosines.

In circuit analysis we use Fourier’s Theorem to 
“decompose” a complex time domain signal into 
its discrete sinusoidal parts (the frequency 
domain.)  Superposition of these frequency 
component returns the signal to the time domain.
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The Time and Frequency Domains
Amplitude

(not power)

Time domain
Measurements
(Oscilloscope)

Frequency Domain
Measurements

(Spectrum Analyzer)

Phase
(or delay)
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Sine Wave in Time Domain 
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Frequency Domain "Stick Plot"
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Frequency Domain "Stick Plot"
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Filtered Signal

Each component is transmitted at its filtered amplitude.
Filter can also introduce phase shift of each component.
Resultant signal is the sum of the transmitted components.

Frequency Domain "Stick Plot"
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With permission, Agilent Technologies
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dBV
Since scope only measures voltage and doesn’t know what load 
resistor you are using, it can’t measure power absolutely, so if 
measure in dBV

dBV is a measure of relative POWER (not voltage)!!!!
A 20 dBV sinewave has 100 times more power than 0dBV 

and 10 times the voltage.

dBV is relative to the power of a sinewave relative 
to a 1 Volt RMS sinewave signal.

dBV = 10 log10(<V2> / 1Vrms) = 10 log10(A2/2) 
where A is the amplitude of the sinewave in volts

Note dBV is it independent of resistive load.
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Fourier Transform (Decomposition)
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Odd and Even Symmetry
cos(x)
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Fourier’s a0 for a Square Wave
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Fourier’s an for a Square Wave
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n=2

Fourier b2
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n=3

Fourier b3
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Fourier Series for Square Wave
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Some Fourier Coefficients1

1Thomas and Rosa (2004). “The Analysis and Design of Linear Circuits,” 4th Ed., John Wiley and Sons, Inc



Based with permission on lectures by John Getty
PHSX 262 Spring 2011 Lecture 5 Page 20

More Fourier Coefficients1

1Thomas and Rosa (2004). “The Analysis and Design of Linear Circuits,” 4th Ed., John Wiley and Sons, Inc
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Computing Discrete Fourier Transforms

If there are N sampled points per period in time domain
 Requires N Fourier components to fully represent

Components an and bn count as one Fourier frequency component
 Components can be expressed as 

A() =|A()|exp(i())
 A() is complex

Requires N x  N complex multiplies to compute discete
Fourier series of N sample long time series.

Fast Fourier Transform (FFT)
- Use math tricks to minimize number of multiplies
 N log2 (N) multiplies to compute Fourier Series
 Your scopes do FFTs
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Filtered signal
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Hanning 
Window

Windows for the FFT
Rectangular 

Window
(Boxcar)

Discontinuities
create sidebands

Smooth up and 
down limits 
sidebands
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Center frequency of a hi-Q filter is swept 
across the frequency band.

Could miss components that come and go, like 
frequency hopper.

Swept Spectrum Analyzer

Good for high frequency signals. Typically expensive. 
Depends on signals being repetitive.  
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Behaves like simultaneous parallel filters: 
Does miss any non-constant components.

P
ow

er
Fast Fourier Transform Analyzer

Captures full signal, but limited in bandwidth. 
Low cost. Built into some oscilloscopes.

f0 3f0 5f0 freq

Time domain signal is first digitized, then FFT is performed
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Fourier in the Audio

http://www.falstad.com/fourier/

Helpful applet:
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