Today

3/1/11 Physics 262 Lecture 7

Digital
 • Numbering systems
 • Digital circuits
 • Logic States
 • Boolean Logic Gates

Homework
 • Next Slide (also review last week’s homework)

Reading
 • Read 8.01-8.04, 8.06-8.08, 8.10, 8.12-8.13
 • Read 9.01-9.04 (Before lab)

Lab this week
 • Lab 6 Basic Digital Gates
 • Pre-lab DO BEFORE LAB (pre-lab graded at start of lab)
Homework

1. Complete the following table by making the appropriate conversions.

<table>
<thead>
<tr>
<th>Binary (base 2)</th>
<th>Hexadecimal (base 16)</th>
<th>Decimal (base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11100₂</td>
<td>1C₁₆</td>
<td>28₁₀</td>
</tr>
<tr>
<td>10101₂</td>
<td>AC₁₆</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19₁₀</td>
</tr>
<tr>
<td></td>
<td></td>
<td>169₁₀</td>
</tr>
</tbody>
</table>

2. Given the standard threshold for TTL and CMOS logic, which of the following is true about the threshold requirements (CIRCLE ONE): (EXPLAIN YOUR ANSWER)
 A) They are always satisfied if the output of a TTL chip drove a CMOS chip
 B) They are always satisfied if the output of a CMOS chip drove a TTL chip
 C) They are always satisfied when TTL and CMOS chips are connected, regardless which one is driving the other.
 D) They are never satisfied when TTL and CMOS chips are connected.

3. Write the truth table for the following circuit. Include pins 9, 11, 1, 2, 13, and 12 in your truth table. What single logic gate does this full circuit perform like?
Numbering Systems

Decimal - Counting in Base 10 and Converting to Decimal
There are a total of 10 unique numbers, 0, 1, . . . , 9

\[3 \cdot 10^3 + 1 \cdot 10^2 + 4 \cdot 10^1 + 1 \cdot 10^0 + 5 \cdot 10^{-1} \]

\[= 3,141.5 \]
Numbering Systems

Binary - Counting in Base 2

There are a total of 2 unique numbers, 0 and 1

1101.1₂

= 8 + 4 + 0 + 1 + 1/2

= 13.5₁₀

and Converting to Decimal

MSU Laboratory Electronics II (PHSX 262) Lecture 7
Numbering Systems \(^{III}\)

Hexadecimal - Counting in Base 16

There are a total of 16 unique numbers:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

\[9E7B.8_{16}\]

\[9 \cdot 16^3 + E \cdot 16^2 + 7 \cdot 16^1 + B \cdot 16^0 + 8 \cdot 16^{-1} = 40,571.5_{10}\]

This method can be applied to any number base to convert to decimal equivalent (base 10).
Base Conversion

For small numbers, a conversion table is convenient and can be readily developed.

Since most of the symbols look the same, it is critical that the base of the number be explicitly identified.

(Octal is base 8)
Modulo

Converting from Decimal to a different base is most easily accomplished using the modulo operation. For example, convert 435_{10} to hexadecimal.

$$435_{10}/16_{10} = 27_{10} \text{ rmndr } 3_{10} \quad \text{Dec to Hex} \quad 3_{16} \quad \text{LSD}$$

$$27_{10}/16_{10} = 1_{10} \text{ rmndr } 11_{10} \quad \text{Dec to Hex} \quad B_{16}$$

$$1/16_{10} = 0_{10} \text{ rmndr } 1_{10} \quad \text{Dec to Hex} \quad 1_{16} \quad \text{MSD}$$

Therefore $435_{10} = 1B3_{16}$

Check: $1*16^2 + 11*16^1 + 3*16^0 = 435_{10}$
Decimal to Binary

Convert 171_{10} to binary:

$171_{10} / 2 = 85_{10}$ r1 1 LSB
$85_{10} / 2 = 42_{10}$ r1 1
$42_{10} / 2 = 21_{10}$ r0 0
$21_{10} / 2 = 10_{10}$ r1 1
$10_{10} / 2 = 5_{10}$ r0 0
$5_{10} / 2 = 2_{10}$ r1 1
$2_{10} / 2 = 1_{10}$ r0 0
$1_{10} / 2 = 0_{10}$ r1 1 MSB

$171_{10} = 10101011_2$
Bits and Computer-ese

Bit: 1 or 0
- High or Low; True or False; Binary value

Byte: $11111111_2, 377_8, 255_{10}, FF_{16}$
- 8 bits, represented by two hexadecimal numbers
- 32 and 64 bit processors are now common
- One byte is 256 units in decimal (0 to 255)
- Storage measure (4GByte RAM, 1TB Hard disk)

Word: 2 Bytes typically (sometimes more)
- Word is integer number of bytes (16 or more bits)
Digital Signals and Noise

“Immune” to noise

• All electronic signals are susceptible to noise, but digital signals are more tolerant to low “signal to noise ratios”.
• Information (a value) transmitted via an analog signal can lose accuracy due to additive noise. Accuracy = SNR.
• Digital signals, if no bits are lost, transfer is 100% accurate up the number of bits (information) transmitted.
• Threshold restoration of digital data
 – Example: >0.5V => 1V (high) <0.5V =>0V (low)
• Hysteretic processing decreases susceptibility to noise
 Example for -1V to 1V binary signal:
 – If current state is “1”, requires signals to drop to “-0.5” to switch to “-1”
 – If current state is “-1”, requires signals to rise to “0.5” to switch to “1”
Noisy Digital Signal and Hysteresis

- Recovered Signal with Threshold = 0V
- Received Signal
- Recovered Signal with Hysteretic threshold

Graph showing
- Signal Amplitude vs. Time
- Different phases of noisy square wave signal and recovery signal with thresholds.
Digital Signals

Advantages

• Improved storage density
• More powerful/accurate signal processing

Disadvantages

• We live in analog world
• A/D and D/A conversion introduces noise or distortion
 – Accurate to within ±1LSB (least significant bit)
 – What is the difference between Noise and Distortion?
Logic States

The on-off behavior of digital signals is used to represent individual bits. :

- 0 → False, binary zero
- 1 → True, binary one

(This convention is referred to as positive logic.)

“Switch” is read as switch closed. “Switch” is read as “not” switch. So when the switch is open, “Switch” is true.
Logic Thresholds and Levels

Input Threshold - the boundary voltage at which a logic device changes its interpretation of an input signal either as a logical false or logical true.

Output Level - the output voltage from a logic device that can be expected for logic false and logic true values.

CMOS

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

High or True

Low or False

= typical value
Input Thresholds

For input signals, the arrow represents the typical decision threshold.

The upper block is the range of input voltages where it is guaranteed that the device recognizes the signal as a logical true.

The lower block is the guaranteed range for logical false inputs.
Output Levels

For output signals, the arrow represents the *typical* voltages that are output for true and false signals.

Manufacturers *guarantee* that the output voltage representing a logical true will fall within the range indicated by the upper block.*

The lower block is the guaranteed range for logical false output signals.

* - assuming all other specifications are satisfied
Noise Margin

Noise Margin or noise immunity is defined as the difference between the guaranteed input threshold and output levels.

High noise margin

\[N_{MH} = V_{out_H} - V_{in_H} \]

Low noise margin

\[N_{ML} = V_{in_L} - V_{out_L} \]
Some Standard Thresholds

<table>
<thead>
<tr>
<th>TTL</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMOS</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logic Functions

Boolean Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Algebraic</th>
<th>Schematic</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>(\cdot, \cap, \land)</td>
<td></td>
<td>(1 \cdot 0 = 0)</td>
</tr>
<tr>
<td>OR</td>
<td>(+, \cup, \lor)</td>
<td></td>
<td>(1 + 0 = 1)</td>
</tr>
<tr>
<td>NOT</td>
<td>(\bar{A}, ', \neg)</td>
<td></td>
<td>(1' = 0)</td>
</tr>
</tbody>
</table>

George Boole
(1815-1864)
AND Gate

Schematic symbol

\[
\begin{array}{c}
A \\
B \\
Q
\end{array}
\]

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Algebraic example

\[Q = A \cdot B \]
OR Gate

Schematic symbol

\[\begin{array}{c}
A \\
B \\
\hline
1 \\
2 \\
\hline
Q \\
3 \\
\end{array} \]

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Algebraic example

\[Q = A + B \]
NOT Gate

Schematic symbol

\[A \rightarrow 2 \quad \text{Q} \]

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Algebraic example

\[Q = \overline{A} \]
NAND Gate

NOT AND is created by inverting an AND gate

NAND Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A•B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Schematic symbol

Algebraic example

\[A \cdot B = Q \]
NOR Gate

Schematic symbol

$$A + B = Q$$

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Boolean Identities

For a more complete list, see Table 8.3 in H&H page 491

Identity and Zero
\[A \cdot 1 = A, \quad A \cdot 0 = 0, \quad A \cdot A = A \]
\[A + 1 = 1, \quad A + 0 = A, \quad A + A = A \]
\[\bar{1} = 0, \quad \bar{0} = 1 \]
\[A \cdot \bar{A} = 0, \quad A + \bar{A} = 1, \quad \overline{(\bar{A})} = A \]

“Not” (inversion)

Associative Properties
\[A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C) \]
\[A + B + C = (A + B) + C = A + (B + C) \]

Distributive Property
\[A \cdot (B + C) = (A \cdot B) + (A \cdot C) \]

Absorption Theorems
\[A + A \cdot B = A, \quad A \cdot (A + B) = A \]

DeMorgan’s Theorems
\[\overline{A + B} = \overline{A} \cdot \overline{B} \]
\[\overline{A \cdot B} = \overline{A} + \overline{B} \]