Today

3/1/11 Physics 262 Lecture 7
Digital

- Numbering systems
- Digital circuits
- Logic States
- Boolean Logic Gates

Homework

- Next Slide (also review last week's homework)

Reading

- Read 8.01-8.04, 8.06-8.08, 8.10, 8.12-8.13
- Read 9.01-9.04 (Before lab)

Lab this week

- Lab 6 Basic Digital Gates
- Pre-lab DO BEFORE LAB (pre-lab graded at start of lab)

Homework

1.Complete the following table by making the appropriate conversions.

| Binary
 (base 2) | Hexadecimal
 (base 16) | Decimal
 (base 10) |
| :---: | :---: | :---: | :---: |
| 11100_{2} | $1 C_{16}$ | 28_{10} |
| 10101_{2} | | |
| | AC_{16} | 19_{10} |
| | | 169_{10} |

2. Given the standard threshold for TTL and CMOS logic, which of the following is true about the threshold requirements (CIRCLE ONE): (EXPLAIN YOUR ANSWER)
A) They are always satisfied if the output of a TTL chip drove a CMOS chip
B) They are always satisfied if the output of a CMOS chip drove a TTL chip
C) They are always satisfied when TTL and CMOS chips are connected, regardless which one is driving the other.
D) They are never satisfied when TTL and CMOS chips are connected.
3. Write the truth table for the following circuit. Include pins $9,11,1,2,13$, and 12 in your truth table. What single logic gate does this full circuit perform like?

Numbering Systems I^{\prime}

Decimal - Counting in Base 10 and Converting to Decimal There are a total of 10 unique numbers, $0,1, \ldots, 9$

Numbering Systems II

Binary - Counting in Base 2 and Converting to Decimal There are a total of 2 unique numbers, 0 and 1

Numbering Systems ${ }_{I I I}$

$\begin{aligned} \text { Hexadecimal - Counting in Base } 16 & \begin{array}{l}\text { and } \\ \text { Converting to }\end{array} \\ \text { There are a total of } 16 \text { unique numbers: } & \begin{array}{l}\text { Decimal }\end{array}\end{aligned}$ $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

$$
\begin{gathered}
9 E 7 B .8_{16} \\
9 \cdot 16^{3}+E \cdot 16^{2}+7 \cdot 16^{1}+B \cdot 16^{0}+8 \cdot 16^{-1}=40,571.5_{10}
\end{gathered}
$$

This method can be applied to any number base to convert to decimal equivalent (base 10).

Base Conversion

For small numbers, a conversion table is convenient and can be readily developed.

Since most of the symbols look the same, it is critical that the base of the number be explicitly identified.
(Octal is base 8)

Decimal	Binary	Octal	Hex.
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	100	10
17	10001	101	11

Modulo

Converting from Decimal to a different base is most easily accomplished using the modulo operation. For example, convert 435_{10} to hexadecimal.

$$
\begin{array}{rlll}
435_{10} / 16_{10} & =27_{10} \text { rmndr } 3_{10} & \text { Dec to Hex } 3_{16} & \text { LSD } \\
27_{10} / 16_{10} & =1_{10} \text { rmndr } 11_{10} & \text { Decto Hex } & \text { B } \\
1 / 16_{10} & =0_{10} \text { rmndr } 1_{10} & \text { Decto Hex } & 1_{16}
\end{array} \text { MSD }
$$

$$
\text { Therefore } 435_{10}=1 \mathrm{~B} 3_{16}
$$

Check: $1^{*} 16^{2}+11^{*} 16^{1}+3^{*} 16^{0}=435_{10}$

Decimal to Binary

Convert 171_{10} to binary:
$171_{10} / 2=85_{10} \mathrm{r} 1 \quad 1 \quad$ LSB
$85_{10} / 2=42_{10} r 1 \quad 1$
$42_{10} / 2=21_{10} \mathrm{rO} \quad 0$
$21_{10} / 2=10_{10} r 1 \quad 1$
$10_{10} / 2=5_{10} \mathrm{rO} \quad 0$
$5_{10} / 2=2_{10} \mathrm{r} 1 \quad 1$
$2_{10} / 2=1_{10} r 0 \quad 0$
$1_{10} / 2=0_{10} r 1 \quad 1 \quad$ MSB

$$
171_{10}=10101011_{2}
$$

Bits and Computer-ese

Bit: 1 or 0

- High or Low; True or False; Binary value

Byte: $11111111_{2}, 377_{8}, 255_{10}$, FF $_{16}$

- 8 bits, represented by two hexadecimal numbers
- 32 and 64 bit processors are now common
- One byte is 256 units in decimal (0 to 255)
- Storage measure (4GByte RAM, 1TB Hard disk)

Word: 2 Bytes typically (sometimes more)

- Word is integer number of bytes (16 or more bits)

Digital Signals and Noise

"Immune" to noise

- All electronic signals are susceptible to noise, but digital signals are more tolerant to low "signal to noise ratios".
- Information (a value) transmitted via an analog signal can lose accuracy due to additive noise. Accuracy = SNR.
- Digital signals, if no bits are lost, transfer is 100\% accurate up the number of bits (information) transmitted.
- Threshold restoration of digital data
- Example: $>0.5 \mathrm{~V}=>1 \mathrm{~V}$ (high) $<0.5 \mathrm{~V}=>0 \mathrm{~V}$ (low)
- Hysteretic processing decreases susceptibility to noise Example for -1 V to 1 V binary signal:
- If current state is " 1 ", requires signals to drop to " -0.5 " to switch to " -1 "
- If current state is "- 1 ", requires signals to rise to " 0.5 " to switch to " 1 "

Noisy Analog Signal

MSU Laboratory Electronics II (PHSX 262) Lecture 7
Page 11

Noisy Digital Signal and Hysteresis

Digital Signals

Advantages

- Improved storage density
- More powerful/accurate signal processing

Disadvantages

- We live in analog world
- A/D and D/A conversion introduces noise or distortion
- Accurate to within ± 1 LSB (least significant bit
-What is the difference between Noise and Distortion?

Logic States

The on-off behavior of digital signals is used to represent individual bits. :

- $0 \rightarrow$ False, binary zero
- $1 \rightarrow$ True, binary one
(This convention is referred to as positive logic.)

"Switch" is read as switch closed. "Switch" is read as "not" switch. So when the switch is open, "Switch" is true.

Logic Thresholds and Levels

Input Threshold - the

boundary voltage at which a logic device changes its interpretation of an input signal either as a logical false or logical true.

Output Level - the output voltage from a logic device that can be expected for logic false and logic true
$\Longrightarrow=\begin{array}{r}\text { typical } \\ \text { value }\end{array}$

High or
True

Low or
False

CMOS
Input Output
 values.

Input Thresholds

For input signals, the arrow represents the typical decision threshold.

The upper block is the range of input voltages where it is guaranteed that the device recognizes the signal as a logical true.

The lower block is the guaranteed range for logical false inputs.

Input Output

Output Levels

For output signals, the arrow represents the typical voltages that are output for true and false signals.

Manufacturers guarantee that the output voltage representing a logical true will fall within the range indicated by the upper block.*

The lower block is the guaranteed range for logical false output signals.

Input Output

* - assuming all other specifications are satisfied

Noise Margin

Noise Margin or noise immunity is defined as the difference between the guaranteed input threshold and output levels.

High noise margin

$$
N_{M_{H}}=V_{o u t_{H}}-V_{i i_{H}}
$$

Low noise margin

$$
N_{M_{L}}=V_{i n_{L}}-V_{o u t_{L}}
$$

Input Output

Some Standard Thresholds

CMOS

Logic Functions

Boolean Operators

Symbol
Name
Algebraic Schematic
AND

OR
$+, \cup, \vee$

NOT
$\bar{A}, \quad{ }^{\prime}, \quad \neg$

$1^{\prime}=0$

AND Gate

Schematic symbol

 Algebraic example
 $Q=A \cdot B$

A	B	Q
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

Schematic symbol

Algebraic example
$Q=A+B$

Truth Table

A	B	Q
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

Schematic symbol

$A \xrightarrow{1}>O^{2} Q$

Truth Table

Algebraic example

$$
Q=\bar{A}
$$

NAND Gate

NOT AND is created by inverting an AND gate

Schematic symbol

Algebraic example

$$
A \cdot B=Q
$$

Truth Table

NOR Gate

Schematic symbol

$A+B=Q$

Truth Table

Basic Boolean Identities

For a more complete list, see Table 8.3 in H\&H page 491
Identity and Zero

$$
A \cdot 1=A, \quad A \cdot 0=0, \quad A \cdot A=A
$$

$$
\overline{1}=0, \quad \overline{0}=1
$$

$A \cdot \bar{A}=0, \quad A+\bar{A}=1, \quad \overline{(\bar{A})}=A$
"Not" (inversion)

Associative $\quad A \cdot B \cdot C=(A \cdot B) \cdot C=A \cdot(B \cdot C)$
Properties

$$
A+B+C=(A+B)+C=A+(B+C)
$$

$A \cdot(B+C)=(A \cdot B)+(A \cdot C)$ Distributive Property
Absorption Theorems

$$
A+A \cdot B=A, \quad A \cdot(A+B)=A
$$

$$
\overline{A+B}=\bar{A} \cdot \bar{B} \quad \overline{A \cdot B}=\bar{A}+\bar{B} \quad \begin{aligned}
& \text { DeMorgan's } \\
& \text { Theorems }
\end{aligned}
$$

