Today

3/8/11 Lecture 8

Sequential Logic, Clocks, and Displays

- Flip Flops and Ripple Counters
- One Shots and Timers
- LED Displays, Decoders, and Drivers

Homework

• XXXX

Reading

• H&H sections on sequential logic and clocks.

Lab

If you have questions: Email or call me on my cell (up to 10pm)

Combinational versus Sequential

Combinational logic:

Output state of the circuit is dependent only on the present input states.

Sequential Logic:

Output state depends on both the present input states *and* on previous history.

A Sequential Logic circuit has memory!

RS Flip-Flop

This circuit cannot be analyzed combinatorially. The output is determined by considering these NAND functions temporally, that is, discussing the state of the outputs (Q_1 and Q'_1) after some event in terms of (Q_0 and Q'_0) before.

$$Q_{1} = S \cdot Q'_{0} \text{ and } Q'_{1} = \overline{R} \cdot Q_{0}$$

if $S = 1$ and $R = 1$
then $Q_{1} = \overline{S} \cdot Q'_{0} = \overline{Q'_{0}}$
and $Q'_{1} = \overline{R} \cdot Q_{0} = \overline{Q_{0}}$
If $Q'_{0} = \operatorname{NOT}(Q_{0})$, then state is unchanged.

The state only changes when one of the inputs (R or S, but not both) are briefly toggled low (FALSE).

State Table for RS FF

Based with permission on lectures by John Getty

74LS74 Chip-Dual D-type flip-flop with Set and Reset

FUNCTION TABLE

		INPU	JTS		OUTF	PUTS	OPERATING		
	SD	RD	СР	D	Q	Q	MODE		
	L	Н	Х	Х	Н	L	Asynchronous set		
	Н	L	Х	Х	L	Н	Asynchronous reset		
	L	L	Х	Х	Н	н	Undetermined*		
^	Н	Н	Ŷ	h	Н	L	Load "1"		
2	Н	Н	Ŷ	Ĩ	L	Н	Load "0"		
~	Н	Н	Ŷ	Х	NC	NC	Hold		

NOTES:

H = High voltage level

- L = Low voltage level
- Low voltage level one setup time prior to low-to-high clock transition
- NC= No change from the previous setup
- X = Don't care
 - = Low-to-high clock transition
- ↓ = Not low-to-high clock transition
 - = This setup is unstable and will change when either set or reset return to the high level.

*

Flip – Flop Shift Register

Based with permission on lectures by John Getty

Ripple Counter

Ripple Down Counter

Hex	0	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
<u>Q3</u>	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Q2	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
Q1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
Q0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Ripple Up Counter

Astable Multivibrator

The astable multivibrator is an oscillator.

The *period and duty cycle* are properties of oscillator.

Timer Circuits - 555

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

One Shot with a 555

FUNCTION TABLE													
RESET	TRIGGER VOLTAGE [†]	THRESHOLD VOLTAGE [†]	OUTPUT	DISCHARGE SWITCH									
Low	Irrelevant	Irrelevant	Low	On									
High	<1/3 V _{DD}	Irrelevant	High	Off									
High	>1/3 V _{DD}	>2/3 V _{DD}	Low	On									
High	>1/3 V _{DD}	<2/3 V _{DD}	As previously established										

"One shot" per trigger pulse

Time – 0.1 ms/div

 $t_w = 1.1R_AC$ (pulse width from the spec sheet)

Continuous Shots with a 555

Based with permission on lectures by John Getty

Setting Frequency of a 555 clock

50% Duty Cycle Clock with 555

For a 50% duty cycle, the resistors R_A and R_B may be connected as in *Figure 14*. The time period for the output high is the same as previous, $t_1 = 0.693 R_A C$. For the output low it is $t_2 =$

$$\left[(\mathsf{R}_{\mathsf{A}} \,\mathsf{R}_{\mathsf{B}}) / (\mathsf{R}_{\mathsf{A}} + \mathsf{R}_{\mathsf{B}}) \right] \mathsf{C} \, \ln \left[\frac{\mathsf{R}_{\mathsf{B}} - 2\mathsf{R}_{\mathsf{A}}}{2\mathsf{R}_{\mathsf{B}} - \mathsf{R}_{\mathsf{A}}} \right]$$

Thus the frequency of oscillation is

$$f = \frac{1}{t_1 + t_2}$$

00785118

Display Technologies-LED

- LED Light Emitting Diode
 - Normally operates at ~10mA
 - Drops ~1.7V •
 - Has typical Solid State Diode • IV Characteristics
 - Available in many different ۲ **COLORS** (Physics achievement!)

CATHODE

ANODE

Based with permission on lectures by John Getty

LED Display Devices

ELECTRO-OPTICAL CHARACTERISTICS

MAN71A 7-Segment Display

Fig. 6. Forward Current vs. Forward Voltage

	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
MAN71A, 72A, 73A, 74A Luminous Intensity, digit average (See Note 1 and 3)	125	350		μcd	I _F =10 mA
Peak emission wavelength		660		nm	
Spectral line half width		20		nm	
Forward voltage Segment Decimal point			2.0 2.0	V V	l _⊧ =20 mA l _⊧ =20 mA
Dynamic resistance Segment Decimal point		2		Ω Ω	I _{pk} =100 mA I _{pk} =100 mA
Capacitance Segment Decimal point		35 35	80 80	pF pF	V=0 V=0
Reverse current Segment Decimal point			100 100	μΑ μΑ	V _R =5.0 V V _R =5.0 V
			MAN71A MAN72A MAN74A	_	
Power dissipation at 25°C ambient Derate linearly from 50°C Storage and operating temperature Continuous forward current			480 mW −6.9 mW/°C −40°C to +85°C	;	
Total Per segment. Decimal point.			240 mA 30 mA 30 mA		

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8

Decimal point.....

Soldering time at 260°C (See Notes 4 and 5)....

Reverse voltage Per segment.

Page 22

6.0 V

6.0 V

5 sec.

BCD

Binary Coded Decimal maps a four bit binary code directly to decimal numbers.

Great for using binary to provide the human interface, but is really inefficient binary "packing" so is rarely used internally in circuits.

Chips are available that perform the conversion binary \rightarrow BCD \rightarrow binary.

A_3	A ₂	A ₁	A ₀	Dec
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Undef
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	1	1	1	Undef

7-Segment LED Display

Truth Table - BCD Decoder

S47	Truth Table																
M74L	Decimal or		Inputs								Outputs						
ā	Function	Ц	RBI	A3	A2	A1	A 0	BI/RBO	a	d	ç	d	- 0	Ī	g	1	
	0	Н	н	L	L	L	L	Н	L	L	L	L	L	L	Н	(Note 2)	
	1	н	X	L	L	L	Н	н	н	L	L	Н	Н	Н	Н	(Note 2)	
	2	н	X	L	L	Н	L	н	L	L	Н	L	L	Н	L		
	3	н	X	L	L	н	н	н	L	L	L	L	н	Н	L		
	4	н	x	L	н	L	L	н	н	L	L	н	н	L	L		
	5	н	X	L	Н	L	Н	н	L	Н	L	L	Н	L	L		
	6	н	X	L	Н	Н	L	н	н	Н	L	L	L	L	L		
	7	н	X	L	Н	Н	Н	н	L	L	L	Н	Н	Н	Н		
	8	Н	×	н	L	L	L	н	L	L	L	L	L	L	L		
	9	н	x	н	L	L	н	н	L	L	L	н	н	L	L		
	10	н	X	н	L	Н	L	н	н	Н	Н	L	L	Н	L		
	11	н	X	н	L	Н	Н	н	н	Н	L	L	Н	Н	L		
	12	н	X	н	Н	L	L	н	н	L	Н	Н	Н	L	L		
	13	н	X	н	н	L	н	н	L	Н	н	L	н	L	L		
	14	н	x	н	н	н	L	н	н	Н	н	L	L	L	L		
	15	н	Х	н	Н	Н	Н	н	н	Н	Н	Н	Н	Н	Н		
	BI	Х	Х	х	Х	Х	Х	L	н	Н	Н	Н	Н	Н	Н	(Note 3)	
	RBI	н	L	L	L	L	L	L	н	Н	Н	Н	Н	Н	Н	(Note 4)	
		L	X	X	х	х	х	н	L	L	L	L	L	L	L	(Note 5)	

Lab 7: Ripple Counter with Display

