Today

3/8/11 Lecture 8
Sequential Logic, Clocks, and Displays

- Flip Flops and Ripple Counters
- One Shots and Timers
- LED Displays, Decoders, and Drivers

Homework

- XXXX

Reading

- H\&H sections on sequential logic and clocks.

Lab

- If you have questions:

Email or call me on my cell (up to 10pm)

Review of Logic Gates

Schematic symbol Algebraic example

Combinational versus Sequential

Combinational logic:
Output state of the circuit is dependant only on the present input states.

Sequential Logic:

Output state depends on both the present input states and on previous history.

A Sequential Logic circuit has memory!

RS Flip-Flop

This circuit cannot be analyzed combinatorially.
The output is determined by considering these NAND functions temporally, that is, discussing the state of the outputs (Q_{1} and $\mathrm{Q}^{\prime}{ }_{1}$) after some event in terms of $\left(\mathrm{Q}_{0}\right.$ and $\mathrm{Q}^{\prime}{ }_{0}$) before.

$$
\begin{gathered}
Q_{1}=\overline{S \cdot Q_{0}^{\prime}} \text { and } Q_{1}^{\prime}=\overline{R \cdot Q_{0}} \\
\text { if } S=1 \quad \text { and } \quad R=1 \\
\text { then } Q_{1}=\overline{S \cdot Q_{0}^{\prime}}=\overline{Q_{0}^{\prime}} \\
\text { and } Q_{1}^{\prime}=\overline{R \cdot Q_{0}}=\overline{Q_{0}} \\
\text { If } Q_{0}^{\prime}=\operatorname{NOT}\left(Q_{0}\right) \text {, then state is unchanged. }
\end{gathered}
$$

The state only changes when one of the inputs (R or S , but not both) are briefly toggled low (FALSE).

State Table for RS FF

Toggle "Set" input (with $\mathrm{R}=1$)

S Q'd	Q_{1}	$\bar{R} \cdot \underline{0}$	Q'	
00	1	0		Q is "set" high
01	1	0	0	if S goes low
10	1	0		
11	0	1	1	No change if both high

Toggle "Reset" input (with $\mathrm{S}=1$)

R Q 0	$\mathrm{Q}_{1}^{\prime} \mid \mathrm{S} \cdot \mathrm{Q}^{\prime}$		$\frac{Q_{1}}{0}$	
00	1	0		Q is "reset" low
01	1	0	0 \}	if R goes low
1 1	1	1	1	No change if
	0			both high

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8
$\overline{\text { Set }}$ RS FF

State Table

S	R	Q	Q^{\prime}
0	0	$?$	$?$
0	1	1	0
1	0	0	1
1	1	No Change	

Page 5

D-type Master-Slave Clocked Flip-Flop

Operation: $\quad \mathrm{Q}=\mathrm{D}$ and Q '=not(D$)$ when CLK goes high.
No change when CLK is low or goes low, even if D changes
No change if D changes after CLK goes high
Data is clocked and locked when CLK transition from low to high
(Details:

74LS74 Chip-Dual D-type flip-flop with Set and Reset

FUNCTION TABLE

	INPUTS				OUTPUTS		OPERATING MODE
	SD	RD	CP	D	Q	\bar{Q}	
	L	H	X	X	H	L	Asynchronous set
	H	L	X	X	L	H	Asynchronous reset
	L	L	X	X	H	H	Undetermined*
ρ	H	H	\uparrow	h	H	L	Load "1"
J	H	H	\uparrow	1	L	H	Load "0"
2	H	H	\uparrow	X	NC	NC	Hold

NOTES:

$\mathrm{H}=$ High voltage level
$h=$ High voltage level one setup time prior to low-to-high clock transition
L = Low voltage level
I = Low voltage level one setup time prior to low-to-high clock transition
$N C=$ No change from the previous setup
$X=$ Don't care
$\uparrow=$ Low-to-high clock transition
$\uparrow=$ Not low-to-high clock transition

* = This setup is unstable and will change when either set or reset return to the high level.

Flip - Flop Shift Register

Clocked Flip-Flop: Divide by 2

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8
Page 9

Ripple Down Counter

Q0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
Q1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
Q2	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
Q3	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Hex 0	F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	

Ripple Up Counter

$\overline{\mathrm{Q} 0}$	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
$\overline{\mathrm{Q} 0}$	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
$\overline{\mathrm{Q} 2}$	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
$\overline{\mathrm{Q} 3}$	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Hex	F	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Astable Multivibrator

The astable multivibrator is an oscillator.
The period and duty cycle are properties of oscillator.

Timer Circuits - 555

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

Timer Circuits - 555

FUNCTION TABLE

RESET	TRIGGER VOLTAGE \dagger	THRESHOLD VOLTAGE \dagger	OUTPUT	DISCHARGE SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	$<1 / 3 \mathrm{~V}_{\mathrm{DD}}$	Irrelevant	High	Off
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$>2 / 3 \mathrm{~V}_{\mathrm{DD}}$	Low	On
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$<2 / 3 \mathrm{~V}_{\mathrm{DD}}$	As previously established	

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8
Page 15

One Shot with a 555

FUNCTION TABLE

RESET	TRIGGER VOLTAGE \dagger	THRESHOLD VOLTAGE	OUTPUT	DISCHARGE SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	$<1 / 3 V_{\mathrm{DD}}$	Irrelevant	High	Off
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$>2 / 3 \mathrm{~V}_{\mathrm{DD}}$	Low	On
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$<2 / 3 \mathrm{~V}_{\mathrm{DD}}$	As previously established	

"One shot" per trigger pulse

$t_{w}=1.1 R_{A} C$ (pulse width from the spec sheet)
Phsx 262 Laboratory Electronics II Spring 11 Lecture 8

Continuous Shots with a 555

The charge time (output high) is given by:

$$
t_{1}=0.693\left(R_{A}+R_{B}\right) C
$$

And the discharge time (output low) by:

$$
\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

Thus the total period is:

$$
\mathrm{T}=\mathrm{t}_{1}+\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

The frequency of oscillation is:

$$
f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Low Duty $D=\frac{R_{B}}{R_{A}+2 R_{B}}<50 \%$

Setting Frequency of a 555 clock

$$
\begin{aligned}
& \text { The charge time (output high) is given by: } \\
& \qquad t_{1}=0.693\left(R_{A}+R_{B}\right) \mathrm{C} \\
& \text { And the discharge time (output low) by: } \\
& \quad t_{2}=0.693\left(R_{B}\right) \mathrm{C} \\
& \text { Thus the total period is: } \\
& \qquad \begin{array}{r}
T=t_{1}+t_{2}=0.693\left(R_{A}+2 R_{B}\right) C \\
\text { The frequency of oscillation is: } \\
\qquad f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
\end{array} \\
& \hline
\end{aligned}
$$

Note: $\operatorname{Max} \mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}$ is $20 \mathrm{M} \Omega$

50\% Duty Cycle Clock with 555

For a 50% duty cycle, the resistors R_{A} and R_{B} may be connected as in Figure 14. The time period for the output high is the same as previous, $t_{1}=0.693 R_{A} C$. For the output low it is $t_{2}=$

$$
\left[\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}\right)\right] C \operatorname{\ell n}\left[\frac{R_{B}-2 R_{A}}{2 R_{B}-R_{A}}\right]
$$

Thus the frequency of oscillation is

$$
f=\frac{1}{t_{1}+t_{2}}
$$

Display Technologies-LED

LED - Light Emitting Diode

- Normally operates at $\sim 10 \mathrm{~mA}$
- Drops ~1.7V
- Has typical Solid State Diode IV Characteristics
- Available in many different colors (Physics achievement!)

7-Segment LED Display

Connected

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8

LED Display Devices

MAN71A

7-Segment Display

Fig. 6. Forward Current vs. Forward Voltage

ELECTRO-OPTICAL CHARACTERISTICS
($25^{\circ} \mathrm{C}$ Free Air Temperature Unless Otherwise Specified) (Cont'd)

	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
MAN71A, 72A, 73A, 74A Luminous Intensity, digit average (See Note 1 and 3)	125	350		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA}$
Peak emission wavelength		660		nm	
Spectral line half width		20		nm	
Forward voltage Segment Decimal point			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	v	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$
Dynamic resistance Segment Decimal point		$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{pk}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{pk}}=100 \mathrm{~mA} \end{aligned}$
Capacitance Segment Decimal point		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & V=0 \\ & V=0 \end{aligned}$
Reverse current Segment Decimal point			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \end{array}$	$\begin{aligned} & V_{\mathrm{A}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=5.0 \mathrm{~V} \end{aligned}$

	MAN71A MAN72A MAN74A
Power dissipation at $25^{\circ} \mathrm{C}$ ambient	480 mW
Derate linearly from $50^{\circ} \mathrm{C}$.	$-6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage and operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous forward current	
Total	240 mA
Per segment.	30 mA
Decimal point.	30 mA
Reverse voltage	
Per segment.	6.0 V
Decimal point.	6.0 V
Soldering time at $260^{\circ} \mathrm{C}$ (See Notes 4 and 5)	5 sec .

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8
Page 22

BCD

Binary Coded Decimal maps a four bit binary code directly to decimal numbers.

Great for using binary to provide the human interface, but is really inefficient binary "packing" so is rarely used internally in circuits.

Chips are available that perform the conversion binary $\rightarrow B C D \rightarrow$ binary.

A_{3}	A_{2}	A_{1}	A_{0}	Dec
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Undef
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
1	1	1	1	Undef

BCD Decoder-Driver

Logic Symbol

```
VCC}=P\mathrm{ Pin 16
GND = Pin 8
```


7-Segment LED Display ${ }^{\text {ANA }}$

Numerical Designations-Resultant Displays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

7-Segment LED Display

Truth Table - BCD Decoder

Truth Table															
$\begin{array}{c\|} \hline \text { Decimal } \\ \text { or } \\ \text { Function } \end{array}$	Inputs							Outputs							Note
	$\overline{\text { LT }}$	$\overline{\mathrm{RBI}}$	A3	A2	A1	A0	$\overline{\text { Blirbo }}$	$\bar{\square}$	$\overline{\text { b }}$	c	$\overline{\mathrm{d}}$	$\overline{\text { e }}$	1	$\overline{\mathrm{g}}$	
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	(Note 2)
1	H	x	L	L	L	H	H	H	L	L	H	H	H	H	(Note 2)
2	H	x	L	L	H	L	H	L	L	H	L	L	H	L	
3	H	x	L	L	H	H	H	L	L	L	L	H	H	L	
4	H	x	L	H	L	L	H	H	L	L	H	H	L	L	
5	H	x	L	H	L	H	H	L	H	L	L	H	L	L	
6	H	x	L	H	H	L	H	H	H	L	L	L	L	L	
7	H	x	L	H	H	H	H	L	L	L	H	H	H	H	
8	H	x	H	L	L	L	H	L	L	L	L	L	L	L	
9	H	x	H	L	L	H	H	L	L	L	H	H	L	L	
10	H	x	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	x	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	x	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	x	H	H	L	H	H	L	H	H	L	H	L	L	
14	H	x	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	x	H	H	H	H	H	H	H	H	H	H	H	H	
B	x	x	x	X	x	x	L	H	H	H	H	H	H	H	(Note 3)
$\overline{\text { REI }}$	H	ᄂ	L	L	L	L	L	H	H	H	H	H	H	H	(Note 4)
$\overline{L T}$	L	x	x	x	x	x	H	L	L	L	L	L	L	L	(Note 5)

Phsx 262 Laboratory Electronics II Spring 11 Lecture 8

Lab 7: Ripple Counter with Display

