# **Today**

- •4/5/11 Physics 262 Lecture 10
- Questions about Exams
- Homework
  - Review your exams and review practice exam again.
- Lab: Continue project
  - Do pre-lab before lab. See last weeks handout.
    - · Requires use of excel/matlab and some thought
  - See handout for more detail.
- Lecture
  - Labview Intro

#### **Stills and Animated Movies**





Show matlab animation
Show excel file
Show 2010 text files

### "Cannon Fire"

```
for(ii=1:8)
 A = [3 2; 2 3; 2 4; 3 5]
   45; 54; 53; 42
   3 2; 7 6;
                 67;
                        23
   3 3; 6 6;
   6+ii 6+ii;
   6+ii 7+ii;
   7+ii 7+ii;
   7+ii 6+ii;
   6+ii 6+ii];
 figure(3);clf;hold on
 N=length(A(:,1))
 for i=1:N-1;
   plot(A((i:i+1),1),A((i:i+1),2),'r-','LineWidth',10/sqrt((A(i,1)-A(i+1,1))^2+(A(i,2)-A(i+1,2))^2))
   tic
   axis([1 16 1 16]);
   while(toc<.005);end;
 end
end
```

# LabVIEW

National Instruments Labview has been around for over 20 years:

1986 LabVIEW 1.0 for Macintosh

1990 LabVIEW 2.0 for Macintosh

1992 LabVIEW for Windows

Labview is a widely used tool in Physics and Engineering labs

Nearly all test, measurement, and control applications can be divided into 3 main components: the ability to

- 1. Acquire data with controlled conditions.
- 2. Analyze data.
- 3. Present data.

# Acquire/Control with LabVIEW



LabVIEW integrates with NI hardware and thousands of I/O devices from hundreds of different vendors.

# LabVIEW can control instruments and acquire data using the following devices/ busses (and many more):

- GPIB, Serial Port, Parallel Port, Ethernet, VXI, PXI Instruments
- Data Acquisition (DAQ)
- PCI eXtensions for Instrumentation (PXI)
- Image Acquisition (IMAQ)
- Motion Control
- Real-Time (RT) PXI
- PLC (through OPC Server)
- PDA
- Modular Instruments

# Analyze with LabVIEW



Analysis is built in to the LabVIEW development environment.

# LabVIEW includes the following tools to help you analyze your data:

- More than 400 measurement analysis functions for Differential Equations,
   Optimization, Curve Fitting, Calculus, Linear Algebra, Statistics, etc.
- Express VIs (Virtual Instruments) specifically designed for measurement analysis, including filtering and spectral analysis
- Signal Processing VIs for Filtering,
   Windowing, Transforms, Peak Detection,
   Harmonic Analysis, Spectrum Analysis, etc.

#### **Present** with LabVIEW



Presentation with LabVIEW can be done realtime or post-processed with Labview.

# LabVIEW includes the following tools to help you present your data:

- On your machine Graphs, Charts, Tables, Gauges, Meters, Tanks, 3D Controls, Picture Control, 3D Graphs (Windows Only), Report Generation (Windows Only)
- Over the Internet Web Publishing Tools, Datasocket (Windows Only), TCP/IP, VI Server, Remote Panels, Email
- Enterprise Connectivity Toolset SQL Tools (Databases), Internet Tools (FTP, Telnet, HTML)

#### Text based versus Graphical based test and measurement

#### **Text based programming**

```
//C++ Calculator Program
#include<iostream.h>
#include<stdlib.h>
int main()
  int a, b;
  cout << "Enter two integers to add: ";
  cin >> a >> b;
  cout << (a + b);
  cout << "Enter two integers to subtract: ";
  cin >> a >> b;
  cout << (a - b);
  cout << "Enter two integers to multiply:
  cin >> a >> b:
  cout << (a * b);
  return 0;
```

#### **Graphical based programming**



# **Opening National Instruments>Labview**



# Virtual Instruments (VIs)

 Virtual instruments (VIs) have three main parts — the front panel, the block diagram, and the icon and connector pane

#### **Front Panel**

- Controls = Inputs
- Indicators = Outputs

#### **Block Diagram**

- Accompanying "program" for front panel
- Components wired together





#### **Front Panel Window**



 The front panel is the user interface of a LabVIEW program and the block diagram is the executable code

# Front Panel and Block Diagram Toolbars

**Broken Run button** 



# **Creating a VI Front Panel**

Build the front panel with controls (inputs) and indicators (outputs)





#### Front Panel - Controls Palette



#### **Controls Palette**

Contains the most commonly used controls

# **Block Diagram – Functions Palette**

Boolean

Cluster

File I/O

Analyze

Sounds

User

Advanced

Libraries

Graphics &



#### **Functions Palette**

Contains the VIs and the most commonly used functions

# **Block Diagram Window**



 The block diagram contains the graphical source code composed of nodes, terminals, and wires

# Creating a VI Block Diagram

Front Panel Block Diagram





- Express VIs: interactive VIs with configurable dialog page
- Standard VIs: modularized VIs customized by wiring
- Functions: fundamental operating elements of LabVIEW; no front panel or block diagram

# **Context Help**

- To display the Context Help window, select
   Help»Show Context Help, press the <Ctrl-H> keys
- Move cursor over object to display help
- Connections:

Required – bold, Recommended – normal, Optional - dimmed



#### **Tools Palette**

- LabVIEW automatically selects the tool it thinks you need
- On both the front panel and the block diagram
- A "tool" is operating mode of the mouse cursor
- Use the tools to operate and modify front panel and block diagram objects
- To show the tools palette, select
   Window»Show Tools Palette



# Wiring Techniques

- Automatic Wiring
- Use Context Help Window when wiring
- Right-click wire and select Clean Up Wire
- Automatic wire routing
- Right-click terminals and select Visible Items»Terminals



Hot Spot-

View the terminal connections to a function

# Wiring the Block Diagram



# **Dataflow Programming**

- Block diagram executes dependent on the flow of data; block diagram does NOT execute left to right
- Node executes when data is available to ALL input terminals
- Nodes supply data to all output terminals when done



### While Loops



LabVIEW While Loop



Flow Chart



Pseudo Code



# For Loops





#### **Structure Tunnels**

- Tunnels feed data into and out of structures.
- The tunnel is a block that appears on the border; the color of the block is related to the data type wired to the tunnel.
- When a tunnel passes data into a loop, the loop executes only after data arrive at the tunnel.
- Data pass out of a loop after the loop terminates.
- Array are indexes as they pass through tunnel, unless auto-indexing is disabled.



# **Auto-Indexing**

- Loops can accumulate arrays at their boundaries with autoindexing
- For Loops auto-index by default
- While Loops output the final value by default
- Right-click on tunnel and enable/disable auto-indexing
- Auto-indexing on Loop input converts arrays to indexed elements (default), which can be disabled at the node.

#### **Auto-Indexing Enabled**



#### **Auto-Indexing Disabled**



# **Creating 2D Arrays**



- Inner loop creates column elements
- Outer loop stacks them into rows