Physics 331 Problem 2

Due Thursday, Sept. 30, 2004

Elliptical Orbits

Kepler's first law states that a planet (or spacecraft) will follow an elliptical orbit about the sun. ¹ In polar coordinates an elliptical orbit is given by the curve:

$$r(\theta) = \frac{a(1-\epsilon^2)}{1+\epsilon\cos(\theta-\theta_P)}.$$
(1)

The three parameters of the orbit are ϵ the eccentricity, *a* the semi-major axis, and θ_P the angle of perihelion (the point closest the Sun).

The above sketch shows an elliptical orbit with perihelion at angle θ_P . Note that ϵ describes how "non-circular" the orbit is. Setting $\epsilon = 0$ gives the curve $r(\theta) = a$, a perfect circle. The orbital parameters for Mars are:

$$a = 2.279 \times 10^{8} \text{km}$$

$$\epsilon = 0.093$$

$$\theta_P = 234^{\circ}$$

 $^{^1{\}rm This}$ assumes the orbiting body is affected only by the gravitational pull of the Sun. We will relax this assumption in the future.

The problem:

A spacecraft A is launched from Earth into an elliptical orbit $r_A(\theta)$ with the parameters

$$a = 1.961 \times 10^8 \text{km}$$

$$\epsilon = 0.25$$

$$\theta_P = 0^{\circ}$$

The question you must answer is: At which angle(s) θ does the orbit of the spacecraft cross the orbit of Mars? HINT: At the crossing point $r_A(\theta) = r_{mars}(\theta)$, each of the curves is given by equation (1) with the appropriate orbital parameters.

Please e-mail the following to kankel@solar.physics.montana.edu:

- 1. The angle or angles at which the orbits cross.
- 2. A copy of the program you wrote.
- 3. A copy of the command(s) used to run your program.