Physics 331 Problem 2

Due Thursday, Sept. 30, 2004

Elliptical Orbits

Kepler's first law states that a planet (or spacecraft) will follow an elliptical orbit about the sun. ${ }^{1}$ In polar coordinates an elliptical orbit is given by the curve:

$$
\begin{equation*}
r(\theta)=\frac{a\left(1-\epsilon^{2}\right)}{1+\epsilon \cos \left(\theta-\theta_{P}\right)} \tag{1}
\end{equation*}
$$

The three parameters of the orbit are ϵ the eccentricity, a the semi-major axis, and θ_{P} the angle of perihelion (the point closest the Sun).

The above sketch shows an elliptical orbit with perihelion at angle θ_{P}. Note that ϵ describes how "non-circular" the orbit is. Setting $\epsilon=0$ gives the curve $r(\theta)=a$, a perfect circle. The orbital parameters for Mars are:

$$
\begin{aligned}
a & =2.279 \times 10^{8} \mathrm{~km} \\
\epsilon & =0.093 \\
\theta_{P} & =234^{\circ}
\end{aligned}
$$

[^0]
The problem:

A spacecraft A is launched from Earth into an elliptical orbit $r_{A}(\theta)$ with the parameters

$$
\begin{aligned}
a & =1.961 \times 10^{8} \mathrm{~km} \\
\epsilon & =0.25 \\
\theta_{P} & =0^{\circ}
\end{aligned}
$$

The question you must answer is: At which angle(s) θ does the orbit of the spacecraft cross the orbit of Mars? Hint: At the crossing point $r_{A}(\theta)=$ $r_{\text {mars }}(\theta)$, each of the curves is given by equation (1) with the appropriate orbital parameters.

Please e-mail the following to kankel@solar.physics.montana.edu:

1. The angle or angles at which the orbits cross.
2. A copy of the program you wrote.
3. A copy of the command(s) used to run your program.

[^0]: ${ }^{1}$ This assumes the orbiting body is affected only by the gravitational pull of the Sun. We will relax this assumption in the future.

