Physics 331 Problem 3 - due Oct. 21, 2004

Gravitational force law

In the first problem you were asked to calculate the distance between the planets Earth and Mars on a given day d of year 2000

$$
\text { distance }=\left|\mathbf{x}_{m}(d)-\mathbf{x}_{e}(d)\right|
$$

where \mathbf{x}_{m} and \mathbf{x}_{e} are two-dimensional vectors giving the locations of Mars and the Earth. In preparation for a calculation of orbital trajectories we will now calculate the force due to the combined gravitational pulls of the Earth, Mars and the Sun. The acceleration at a point \mathbf{x} is

$$
\mathbf{A}(\mathbf{x}, d)=-G M_{s} \frac{\mathbf{x}}{|\mathbf{x}|^{3}}+G M_{e} \frac{\mathbf{x}_{e}(d)-\mathbf{x}}{\left|\mathbf{x}_{e}(d)-\mathbf{x}\right|^{3}}+G M_{m} \frac{\mathbf{x}_{m}(d)-\mathbf{x}}{\left|\mathbf{x}_{m}(d)-\mathbf{x}\right|^{3}}
$$

where $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{sec}^{-2} \mathrm{~kg}^{-1}$ and M_{i} is the Mass of object i. When calculating orbits for Mars-bound space-craft please be sure to use consistent units!

$$
\begin{array}{cl}
\text { Sun } & 1.99 \times 10^{30} \mathrm{~kg} \\
\text { Earth } & 5.94 \times 10^{24} \mathrm{~kg} \\
\text { Mars } & 6.42 \times 10^{23} \mathrm{~kg}
\end{array}
$$

The problem:

Write a program which takes as input arguments day d and a 2 -component position vector \mathbf{x}, and returns as output value the acceleration vector \mathbf{A}. Use this function to compute the following accelerations.
a. $d=100, \mathrm{x}=[1.111,1.001] \times 10^{11} \mathrm{~m}$
b. $d=140, \mathrm{x}=[1.111,1.001] \times 10^{11} \mathrm{~m}$
c. $d=262, \mathrm{x}=[1.763,1.443] \times 10^{11} \mathrm{~m}$

Please e-mail the following to my address kankel@solar.physics.montana.edu:

1. The acceleration \mathbf{A} for each case above.
2. A copy of the program you wrote.
3. A copy of the command(s) used to run your program.
