Physics 331 Problem 4 - due December 2, 2004

Rocket Science

An unmanned rocket has engines which burn fuel at a rate of

$$
\begin{equation*}
R_{B}=-\frac{d M}{d t}=2 \mathrm{~kg} / \mathrm{sec} \tag{1}
\end{equation*}
$$

Note that $d M / d t<0$ since the fuel mass is decreasing as it burns away. The rocket begins with 60 kg of fuel and an unfueled mass 30 kg , making the combined mass

$$
\begin{equation*}
M(t)=(90-2 t) \mathrm{kg} \tag{2}
\end{equation*}
$$

for $t \leq 30 \mathrm{sec}$ until all fuel is burned. The engines generate a force (thrust) of

$$
\begin{equation*}
F_{t}=1000 \text { Newtons } \tag{3}
\end{equation*}
$$

during burn (an exhaust speed of $\sim 500 \mathrm{~m} / \mathrm{sec}$). The aerodynamic drag is

$$
\begin{equation*}
F_{\mathrm{D}}=0.075 v^{2} \tag{4}
\end{equation*}
$$

due to an area $A=0.25 \mathrm{~m}^{2}$ and drag coefficient $C_{\mathrm{D}}=0.5$. Setting the rate of change of upward momentum, $M(t) v$, equal to the sum of upward thrust, downward drag and downward gravity we find the force-law

$$
M(t) \frac{d v}{d t}=F_{t}-F_{\mathrm{D}}-M(t) g
$$

Dividing by $M(t)$ gives the differential equation for $v(t)$

$$
\begin{equation*}
\frac{d v}{d t}=\frac{1000-0.075 v^{2}}{90-2 t}-9.8 \tag{5}
\end{equation*}
$$

which applies for $0 \leq t \leq 30 \mathrm{sec}$.
The rocket begins from rest, $v=0$, at time $t=0$. Solve the differential equation, (5), to find the rocket's velocity at $t=15 \mathrm{sec}$ and $t=30 \mathrm{sec}$. Please check that your answer is reliable (i.e. solve with two different time steps).

Please e-mail the following to my address kankel@solar.physics.montana.edu:

1. The velocities $v(15)$ and $v(30)$.
2. A copy of the program you wrote.
3. A copy of the command(s) used to run your program, which should let me know what size time-step you have taken, and which solution algorithm you used.
4. A comment on the reliability of 1. i.e. tell me the change in $v(30)$ resulting from two different time steps.
