EIGENFUNCTIONS AND DUAL NOTATION, E.G.

Hermitian Operators

\(\langle y, x \rangle = \langle x, y \rangle \)

\(\langle y_i, x \rangle = \delta_{i,0} \)

WAY WE LIKE HERMITIAN OPERATORS

\(\langle y_i, x \rangle = \delta_{i,0} \)

\(\lambda_i \in \mathbb{R} \)

FOR DEGENERACIES

\(\lambda_i = \lambda_j \)

\(\langle x, y_i \rangle = \delta_{i,j} \)

WE CAN USE GRAM-SCHMIDT ORTHOGONALIZATION

TO ENSURE THAT

\(* \) is satisfied

GREEN'S FUNCTIONS FOR HERMITIAN OPERATORS

STURM-LIOUVILLE EQUATIONS

TODAY:

COMING UP:

RHODES BROADEN THE DEFINITION OF THE INNER PRODUCT TO

RHODES DISTINGUISH BETWEEN SELF-ADJOINT AND HERMITIAN. IF

THE AMOUNT IS DEFINED AS ABOVE, THERE IS NO DISCIPLINE.
\[c_i = \frac{\int_a^b \frac{1}{y} \, dx}{\int_a^b y \, dx} = \frac{\int_a^b \frac{1}{y} \, dx}{\int_a^b y \, dx} \]

Now multiply by \(y \) and integrate:

\[\int_a^b \frac{1}{y} \, dy = \int_a^b f(x) \, dx \]

\[\left[\ln |y| \right]_a^b = \int_a^b f(x) \, dx \]

\[\ln |b| - \ln |a| = \int_a^b f(x) \, dx \]

THE Y

Our original inhomogeneous ODE in terms of Hit Equation with \(\beta \), and we get

\[y_n'(x) = (x) \]

TO DO: FIND THE C's (here!)

\[y_n = (x) \]

THE SOLUTION: Since the \(y_i \) are an orthogonal set, write

\[\int_a^b y_i \, dx = \delta_{ij} \]

Frist, solve the eigenvalue problem for \(\phi \):

\[\phi_n = \int_a^b f(x) \phi_n(x) \]

Suppose we want to solve

Green's Functions
Exercise: Prove that $g(x, y)$ is a solution.

Expression of $g(x, y) = 5 \cdot (x, x)$

Mathematically, we can see from the above

An impulse: The response of a physical system A physically, it must be real since 1 is a question: Is $g(x, x)$ real?

Question: Is $g(x, x)$ function?

\[g(x, x) = \int x \cdot p(x) \, dx \cdot \left(\int x^2 \, dx \right) \frac{1}{Z} Z = (x) Y \]

Relevant:

\[\langle \psi | x \rangle \langle x | \psi \rangle \frac{1}{Z} Z = \langle \psi | \psi \rangle \]

Returning to Equation...
\[a \cdot (x) \cdot 6 = \langle 6 \mid x \rangle = \langle 6 \mid x \rangle \cdot \langle x \mid 2 \rangle = \]

\[\langle 6 \mid x \rangle \cdot \langle x \mid 2 \rangle = \langle 6 \mid x \rangle \cdot \langle x \mid 2 \rangle = \]

\[\langle 6 \mid x \rangle \cdot \langle x \mid 2 \rangle = \]

\[\begin{align*}
\left(x - x \right)^2 &= 0 \\
\langle x \rangle^2 &= 0
\end{align*} \]