§ 17.4 STVRM-LIOUVILLE Equations
MAN NO ODES THAT COMMONLY OCLUR IN PHYSKS CAN BE PUT IN STURM-LIOUVILLE form:

$$
p(x) \frac{d^{2} y}{d x^{2}}+\frac{d p}{d x} \frac{d y}{d x}+q(x) y+\lambda_{p}^{\infty}(x) y=0
$$

Note The INVGRTCD SiGN of λ THIS KS RAB'3 CONVENTION

WEIghting factor Fine Normalization or Elgenfunctions

THE STURM-LIOUVVLE OPERATOR IS THEN DI WHERE

$$
\begin{aligned}
& \mathscr{D} y=\lambda y \\
\dot{W}= & -\frac{p}{p} \frac{d^{2}}{d x^{2}}-\frac{p^{\prime}}{p} \frac{d}{d x}-\frac{q}{p} \\
= & -\left[\frac{1}{p} \frac{d}{d x}\left(p \frac{d}{d x}\right)+\frac{q}{p}\right]
\end{aligned}
$$

is dy hermitian?
SHow: $\langle\mathcal{L f} \mid g\rangle=\langle f \mid \mathcal{D}\rangle$
1.E., SHOW $\langle D f \mid g\rangle$ INVARIANT UNDER $f^{*} \leftrightarrow g$.

$$
\begin{aligned}
& \int_{a}^{b}-\frac{1}{p}\left[\frac{d}{d x}\left(p \frac{d f^{*}}{d x}\right)+q f^{*}\right] g \underbrace{p d x}_{d V} \\
& =-\int_{a}^{b} \frac{d}{d x}\left(p \frac{d f^{*}}{d x}\right) g d x-\int_{a}^{b} q f^{*} g d x \\
& \text { SYMM ETRIC } \\
& \text { FIRST TEMEM: } \\
& \text { UNDER } f^{*} \leftrightarrow g
\end{aligned}
$$

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \quad u=g, \quad d u=g^{\prime} d x ; \quad d v=\frac{d}{d x}() d x, v=() \\
& \left.g\left(p \frac{d f^{*}}{d x}\right)\right|_{a} ^{b}+\int_{a}^{b} p f^{*^{\prime}} g^{\prime} d x
\end{aligned}
$$

srmmetric undor

$$
f^{*} \leftrightarrow y
$$

THE WHOLE EXPRESSION WIL BE SHMMETRIC IE TATS TEPM IS ZERO.
$\left.g p f^{*^{\prime}}\right|_{a} ^{b}=0 \Leftrightarrow d /$ is HEAMITAN
EIGENFUNCTION METHODS FOR DIFFERENTIAL EQUATIONS

Equation	$p(x)$	$q(x)$	λ	$\rho(x)$
Hypergeometric	$x^{c}(1-x)^{a+b-c+1}$	0	$-a b$	$x^{c-1}(1-x)^{a+b-c}$
Legendre	$1-x^{2}$	0	$\ell(\ell+1)$	1
Associated Legendre	$1-x^{2}$	$-m^{2} /\left(1-x^{2}\right)$	$\ell(\ell+1)$	1
Chebyshev	$\left(1-x^{2}\right)^{1 / 2}$	0	v^{2}	$\left(1-x^{2}\right)^{-1 / 2}$
Confluent hypergeometric	$x^{c} e^{-x}$	0	$-a$	$x^{c-1} e^{-x}$
Bessel*	x	$-v^{2} / x$	α^{2}	v
Laguerre	$x e^{-x}$	0	v	e^{-x}
Associated Laguerre	$x^{m+1} e^{-x}$	0	$2 v$	$x^{m} e^{-x}$
Hermite	$e^{-x^{2}}$	0	$e^{-x^{2}}$	
Simple harmonic	1	0	ω^{2}	1

$$
\begin{aligned}
& \text { Table 17.1 The Sturm-Liouville form (17.34) for important ODEs in the } \\
& \text { physical sciences and engineering. The asterisk denotes that, for Bessel's equa- } \\
& \text { tion, a change of variable } x \rightarrow x / a \text { is required to give the conventional } \\
& \text { normalisation used here, but is not needed for the transformation into Sturm- } \\
& \text { Liouville form. }
\end{aligned}
$$

GIVEN A MORE GENERAL EQUATION,

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y+\lambda d(x) y=0
$$

CAN IT BE EXPRESSED IN STURM-LIOVVILLE FORM?
RHO CLAIMS WE NEED ONLY MULTIPLY BY...

$$
F(x) \equiv \operatorname{Exp}\left(\int \frac{b(x)-a^{\prime}(x)}{a(x)} d x\right) \quad(\text { cF. Ex. 17.39 })
$$

How Can we tet this?

$$
\begin{aligned}
& p(x)=a(x) F(x) \\
& p^{\prime}(x) \stackrel{3}{=} b(x) F(x) \\
& q(x)=c(x) F(x) \\
& p(x)=d(x) F(x) \\
& p^{\prime}=a^{\prime} F+a F^{\prime} \\
& F^{\prime}=\frac{b-a^{\prime}}{a} F, \text { so } \\
& p^{\prime} \\
& p^{\prime}=a^{\prime} F+\left(b-a^{\prime}\right) F=b F
\end{aligned}
$$

BUT NOPE: THERE IS OFTEN A SIMPLER OR MORE OBVIOUS WAY TO GET $F(X)$.

EXAMPLE ELECTROSTATICS IN EXCINDRICAL SYMMEATR

$$
\begin{aligned}
& \nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi_{d}^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& \nabla^{2} \Phi=\frac{\rho}{\epsilon_{0}} \text { Becomes } \\
& \left(\frac{1}{r}\right)^{\frac{d}{d r}}\left(r \frac{d}{d r}\right) \Phi=\frac{C}{\epsilon_{0}} \equiv f(r) \\
& \Phi^{\prime \prime}+\frac{1}{r} \Phi^{\prime}=f(r)
\end{aligned}
$$

EIGenvalue problem:

$$
\Phi^{\prime \prime}+\frac{1}{r} \Phi^{\prime}+\lambda \Phi=0
$$

2: PUT INTO S-L From ... How?
A: MULTIPLY BK r.

$$
\begin{gathered}
r \Phi^{\prime \prime}+\Phi^{\prime}+r \lambda \Phi=0 \\
4 \quad q \\
p(r)=r \quad q(r)=r \\
q(r)=0!
\end{gathered}
$$

Q: DoEs This REGEMBLE ANYTANGG IN TABLE 17.1? ...

* Note how the $p(r)=r$ is naturally includes in ∇^{2}. THIS IS NORMAL!

A: TUrns out we have bessel's equation with $V=0$;
\rightarrow BUT How does tate whole Elgenvarve thill work? BESSEL'S EQN RSi (P.568)

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-V^{2}\right) y=0 \text {, sold. } y=J_{v}(x)
$$

LET $\bar{x}=x / \alpha$

$$
\begin{aligned}
& \bar{x} y^{\prime \prime}(\alpha \bar{x})+y^{\prime}(\alpha \bar{x})-\frac{v^{2}}{\bar{x}} y(\alpha \bar{x})+\alpha^{2} \bar{x} y(\alpha \bar{x})=0 \\
& \left.(P R) M E=\frac{d}{d \bar{x}} \quad 1\right) \quad \text { SOL. } y=J_{v}(\alpha \bar{x})
\end{aligned}
$$

Now $\quad \bar{x} \rightarrow r$

$$
y \rightarrow J_{v}(\alpha r)=\Phi(r)
$$

AND. WE HAVE $V=0$,

$$
\lambda=\alpha^{2}
$$

NOTE THAT THERE ARE A CONTINUUM OF EIGENVALUES α^{2}. So

$$
\sum_{i} \rightarrow \int
$$

ORTH NORMALITY: $\oint 18.5 .3$
CAREFUL WITH NORMALIZATION - SHOULD HAVE A $1 / \alpha$ is IT!

