WE ARE ON CH. 20.

LAST TIME:

DISCUSSED VARIOUS PHYSICS PDES AND WHERE THEY COME FROM.

THIS TIME:

§§ 20.2-20.3, 1, FIRST-ORDER EQUATIONS
(A PRELUDE TO THE METHOD OF CHARACTERISTICS)

NEXT TIME:

§ 20.3.2 INHOMOGENEOUS FIRST-ORDER
§ 20.3.3 SECOND-ORDER EQUATIONS
§ 20.2 (My presentation is similar to RHB, but they give a different example)

Consider the first-order ODE

\[x \frac{du}{dx} + y \frac{du}{dy} = 0. \]

I assert that the following are particular solutions:

\[U_1 = \frac{x^2 + y^2}{xy} \]

\[U_2 = \ln y - \ln x \]

\[U_3 = \theta, \text{ where } x = r \cos \theta, \ y = r \sin \theta \]

\[U_4 = \frac{z}{|z|}, \text{ where } z = x + iy. \]

→ Divide into 3-4 groups to check these solutions.

Question: What do these four solutions have in common?

Answer: All are of the form

\[U = f(p), \text{ where } p(x,y) = y/x. \]

This is, in fact, the general solution for §.!
HOW DID I CONTRIVE THIS EXAMPLE? RHBill S RECIPE:

- CHOOSE \(p(x,y) = \frac{y}{x} \), ANY FUNCTION WILL DO! (BOOK USES \(x^2 + 2y \) AS AN EXAMPLE.)

- LETTING \(U = f(p) \) FOR SOME ARBITRARY \(f \),

\[
\begin{align*}
\frac{\partial u}{\partial x} &= f' \frac{\partial p}{\partial x} = -\frac{y}{x^2} f' \\
\frac{\partial u}{\partial y} &= f' \frac{\partial p}{\partial y} = \frac{f'}{x}
\end{align*}
\]

- WE WANT AN ODE THAT WORKS FOR ANY \(f(p) \).

TO ELIMINATE \(f' \) FROM THE ABOVE, DIVIDE THE TWO EQUATIONS (OR CROSS-MULTIPLY THEM):

\[
\frac{\partial u}{\partial x} \cdot \frac{\partial p}{\partial y} = \frac{\partial u}{\partial y} \cdot \frac{f'}{\partial x}
\]

WHICH, IN OUR CASE, IS

\[
\frac{1}{x} \frac{\partial u}{\partial x} + \frac{y}{x^2} \frac{\partial u}{\partial y} = 0
\]

\[
\frac{1}{x} \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0
\]

- IT ONLY REMAINS TO CHOOSE SOME PARTICULAR SOLUTIONS FOR THE EXAMPLE:

\[
U_1 = p + \frac{1}{p} = \frac{y}{x} + \frac{x}{y} = \frac{x^2 + y^2}{xy}
\]

\[
U_2 = ln \left(\frac{y}{x} \right) = ln y - ln x
\]

\[
U_3 = tan^{-1} \left(\frac{y}{x} \right) = \Theta \quad (IN \ \text{POLAR COORD'S})
\]

\[
U_4 = e^{i\Theta} = \cos \Theta + i\sin \Theta = \frac{x + iy}{\sqrt{x^2 + y^2}} = \frac{z}{|z|}
\]
§20.3.1 Solving First-Order Eq's (2 Independent Var's)

General Form:

\[A(x,y) \frac{du}{dx} + B(x,y) \frac{du}{dy} + C(x,y) u = R(x,y) \] \hspace{1cm} (20.9)

Note: If either of these is zero, it's an ODE. But the "constant" of integration is an arbitrary function of \(x \) (if \(A = 0 \)) or of \(y \) (if \(B = 0 \)). (See example in text)

First, consider if \(C = R = 0 \). If \(u = f(p) \), then (as in our example, Eq. \(\star \star \)),

\[\frac{du}{dx} = f' \frac{dp}{dx} \]

\[\frac{du}{dy} = f' \frac{dp}{dy} \]

Sub into (20.9):

\[A f' \frac{dp}{dx} + B f' \frac{dp}{dy} = 0 \]

\[A \frac{dp}{dx} + B \frac{dp}{dy} = 0, \quad p = p(x,y) \] \hspace{1cm} (20.10)

Got our original PDE back. What good is that?!
SEEMINGLY INNOCENT QUESTION:
WHAT DOES IT TAKE TO HOLD \(p \) (AND THUS \(f \)) CONSTANT WHILE \(x \) AND \(y \) CHANGE?

\[
dp = \frac{dp}{dx} dx + \frac{dp}{dy} dy = 0 \quad (20.11)
\]

COMBINING 20.10 WITH 20.11 (DIVIDE EQ'S),

\[
\frac{dx}{A(x,y)} = \frac{dy}{B(x,y)}. \quad (20.12)
\]

IF WE INTEGRATE THIS EQ., THEN WE WILL GET AN INTEGRATION CONSTANT \(C \):

\[
BLAH(x,y) = C
\]

ANSWER: IF \(BLAH(x,y) \) IS CONSTANT, THEN \(p \) WILL BE CONSTANT. WE THEREFORE MAKE THE IDENTIFICATION

\[
p = BLAH(x,y)
\]

OR, IF MORE CONVENIENT,

\[
p = FUNCTION(BLAH(x,y)).
\]

DISCUSS: THE ARGUMENT ON THIS PAGE MAY SEEM MORE COMPELLING IF IT IS REVIEWED IN REVERSE ORDER.

NOTE: THIS PROCEDURE IS NOT GUARANTEED TO WORK. NOT ALL LINEAR PDE'S HAVE SOLN'S OF FORM \(f(p) \).
EXAMPLE (BOOK HAS A DIFFERENT ONE)

\[x \frac{du}{dx} + y \frac{du}{dy} = 0 \quad \text{(SAME PDE AS BEFORE)} \]

FIRST, LET'S DO IT WITHOUT B.C.'S, TO GET A GENERAL SOLN.

APPLY EQ. 20.12:

\[
\int \frac{dx}{x} = \int \frac{dy}{y}
\]

\[C + \ln x = \ln y \]

\[C = \ln y - \ln x = \ln \left(\frac{y}{x} \right) \]

WE COULD LET \(p = \ln \left(\frac{y}{x} \right) \), BUT FOR SIMPLICITY, LET

\[p = \frac{y}{x} \]

GEN SOLN: \(u = f(p) = f \left(\frac{y}{x} \right) \)

QUESTIONS?

\[\longrightarrow \text{NOW APPLY B.C. : } u = 4y + 1 \text{ ON THE LINE } x = 1. \]
Example *(you try!)*

Find General Solution of

\[
\frac{\partial u}{\partial x} = x \frac{\partial u}{\partial y}
\]

(Answer: \(p(x,y) = x^2 + 2y \))

Boundary Conditions:

(i) \(u = y \) on \(x = 1 \)

(ii) \(u = y \) on \(y = -x^2 \) *(Slightly trickier!)*