LAST TIME, WE CONSIDERED EQUATIONS OF THE FORM

\[A(x,y) \frac{du}{dx} + B(x,y) \frac{du}{dy} = 0. \]

WE ASSUMED A SOLUTION OF THE FORM

\[u(x,y) = f(p), \quad \text{for some } p(x,y). \]

\(\text{THIS PRODUCED A PDE FOR } p, \text{ WITHOUT } f \text{ IN IT. (KEY POINT)} \)

WE FOUND \(p(x,y) \) BY SETTING \(dp = 0 \) AND FINDING

\[\frac{dx}{A} = \frac{dy}{B} \]

\(\uparrow \text{ INTEGRATE} \)

\[\text{BLAH}(x,y) = \text{CONST.} = p \]

OR \(p = F(\text{BLAH}) \) FOR CONVENIENCE,

TODAY, WE CONSIDER MORE GENERAL PROBLEMS:

\[A(x,y) \frac{du}{dx} + B(x,y) \frac{du}{dy} + C(x,y) u = R(x,y) \]

FIRST \quad \text{SECOND}
ADD A TERM $C(x, y)u$:

$$A \frac{\partial u}{\partial x} + B \frac{\partial u}{\partial y} + Cu = 0$$

TRY OUR OLD TRICK:

$$U(x, y) = f(p(x, y))$$

$$\frac{\partial u}{\partial x} = f' \frac{\partial p}{\partial x}, \quad \frac{\partial u}{\partial y} = f' \frac{\partial p}{\partial y}$$

SO OUR PDE (*A*) BECOMES:

$$A f' \frac{\partial p}{\partial x} + B f' \frac{\partial p}{\partial y} + C f(p) = 0$$

UH-OH! WE CAN'T GET RID OF f. THIS IS A NO-GO.

NEW TRICK: $U(x, y) = h(x, y) f(p)$

NOW,

$$\frac{\partial u}{\partial x} = \frac{\partial h}{\partial x} f(p) + h f' \frac{\partial p}{\partial x}$$

$$\frac{\partial u}{\partial y} = \frac{\partial h}{\partial y} f(p) + h f' \frac{\partial p}{\partial y}$$

SUBSTITUTING INTO (*A*), OUR PDE BECOMES

$$\left(A \frac{\partial h}{\partial x} + B \frac{\partial h}{\partial y} + C h \right) f(p) + \left(A \frac{\partial p}{\partial x} + B \frac{\partial p}{\partial y} \right) h f' = 0$$

IF $h(x, y)$ IS ANY NONZERO SOLN. OF (*A*), THIS TERM DISAPPEARS.

WE ARE LEFT WITH A C-LESS PDE:

$$A \frac{\partial p}{\partial x} + B \frac{\partial p}{\partial y} = 0$$
... which we know how to solve:

\[
\frac{dx}{A} = \frac{dy}{B} \quad \downarrow \text{Integrate}
\]

BLAH(x, y) = \text{const.}

\[p = \text{BLAH or } p = F(\text{BLAH}). \]

Example (Book, p. 648) Find general soln:

\[x \frac{du}{dx} + 2 \frac{du}{dy} - 2u = 0 \quad (20.15) \]

Summary of soln: \[p = xe^{-y/2} \]

\[U(x, y) = h(x, y) f(xe^{-y/2}) \]

For \(h(x, y) \) can choose, e.g., \(e^y \) or \(x^2 \). So

\[U(x, y) = e^y f(xe^{-y/2}) \quad \{ \text{general solution} \} \]

or \(= x^2 g(xe^{-y/2}) \)

Note that \(g(p) = f(p)/p^2 \).

If this factor were not a function of \(p \), we'd be worried! (Why?)
Inhomogeneous Equations & Problems (§ 20.3.2)

Inhomogeneous Equation:

\[
A \frac{\partial u}{\partial x} + B \frac{\partial u}{\partial y} + C u = R(x, y)
\]

Suppose \(u_1(x, y) \) and \(u_2(x, y) \) are solutions.

\(\text{(Show:)}\) \(u_1 + u_2 \) is **not** a solution!

But suppose \(w(x, y) \) is any solution to the homogeneous problem:

\[
A \frac{\partial w}{\partial x} + B \frac{\partial w}{\partial y} + C w = 0.
\]

Then \(u = u_1 + w \) is a solution to

\(\text{(and so is } u_2 + w)\)

Example: \(w = u_2 - u_1 \) would work.

If \(w(x, y) \) is the general solution to the homogeneous equation, and \(u_1(x, y) \) is any solution to the inhomogeneous equation, then

\[u = u_1 + w \]

is the general solution to the inhomogeneous equation.
IT IS POSSIBLE FOR THE **PROBLEM** TO BE **INHOMOGENEOUS** **EVEN WHEN THE EQUATION ISN'T.**

E.g.,

\[
\frac{\partial u}{\partial x} + B \frac{\partial u}{\partial y} + C u = 0
\]

WITH INHOMOGENEOUS B.C. \(u = F(x) \) **ON** \(y = 0 \)

IF \(u_1 \) AND \(u_2 \) **ARE SOLUTIONS TO THE PROBLEM,**

THE FOLLOWING ARE NOT:

\[
\begin{align*}
 u &= u_1 + u_2 \quad \rightarrow \quad u(x,0) = 2F(x) \\
 u &= \sin u_1 \quad \rightarrow \quad u(x,0) = \pi F(x) \\
 \text{Etc.}
\end{align*}
\]

THE BOUNDARY CONDITIONS ARE CONSIDERED HOMOGENEOUS **IF, FOR ANY** \(u(x,y) \) **THAT SATISFIES THEM,**

\(\lambda u(x,y) \) **ALSO SATISFIES THEM.**

THE PROBLEM IS HOMOGENEOUS IF WE HAVE BOTH

(i) **HOMOGENEOUS EQUATION**

(ii) **HOMOGENEOUS B.C.'S**
Example

Solve

\[y \frac{du}{dx} - x \frac{du}{dy} = 3x \quad (20.18) \]

Subject to \(u(1,0) = 2 \). \(\Leftarrow \) inhomogeneous B.C.

1. First, solve the homogeneous eqn:

\[y \frac{dw}{dx} - x \frac{dw}{dy} = 0 \]

\[\frac{dx}{y} = \frac{dy}{-x} \]

\[\int x \, dx + \int y \, dy = 0 \]

\[\frac{x^2}{2} + \frac{y^2}{2} = C \]

Gen soln \(w = f(p) \) where \(p = x^2 + y^2 \)

2. Now seek the general solution (without B.C.'s) to the inhomogeneous eq. (20.18).

If we can find a particular soln. \(u(x,y) \), then the general soln. will be \(u = v + w \).

By inspection: \(u(x,y) = -3y \)

Gen soln to (20.18) is thus

\[u(x,y) = f(x^2 + y^2) - 3y \]
EXAMPLE, CONT.

3 NOW FOR THE B.C.:

\[U(1,0) = 2 \]
\[f(1+0) - 0 = 2 \]
\[f(1) = 2 \]

IF WE CHOOSE, E.G., \(f(p) = 2p \), THEN
\[f(p) \]
\[U(x,y) = 2x^2 + 2y^2 - 3y + g(x^2 + y^2) \]
WHERE \(g \) IS ANY FUNCTION WITH \(g(1) = 0 \).

COULD ALSO CHOOSE \(f(p) = 2! \), THEN
\[U(x,y) = 2 - 3y + g(x^2 + y^2), \quad g(1) = 0. \]

ASSERTION: EACH OF THESE IS THE GENERAL SOLUTION. DO THEY AGREE?

\[2x^2 + 2y^2 - 3x + g_1 = 2 - 3x + g_2 \]
\[g_2 = g_1 + 2p - 2 \]

THIS IS \(g_3(p) \). NOTE THAT \(g(1) = 0 \).