
DFT and FFT

C. Kankelborg

Rev. February 3, 2014

1 Introduction

The Fourier transform is a powerful tool in the solution of linear systems,
including:

• Inhomogeneous ODEs (e.g. frequency response, impulse response)

• Inhomogeneous PDEs (e.g. scattering, diffraction, diffusion)

• Linear integral equations (e.g. deconvolution, tomography)

All of these applications can be realized numerically on coordinate grids in
1 or more dimensions using the discrete Fourier transform (DFT), typically
implemented as a fast fourier transform (FFT). In addition to the above
applications, the FFT offers a computationally efficient approach to a wide
range of signal and image processing tasks:

• Power spectral estimation and peak bagging

• Ideal interpolation of time series and images

• Digital filtering

• Compression algorithms

This paper summarizes some important practical aspects of using the FFT
for newcomers or old hands who have grown rusty. For those seeking a
more comprehensive treatment of continuous or discrete Fourier transforms,
I recommend Ronald Bracewell’s classic The Fourier Transform and Its Ap-
plications.

1

2 Definition and Properties

2.1 DFT and its Inverse

Given a time series fn for uniformly sampled times tn = (n − 1) ∆t, where
1 ≤ n ≤ N , the DFT is defined as follows:

f̃k =
N∑
n=1

fn e
−2πi(k−1)(n−1)/N . (1)

I have reluctantly used the awkward n− 1 and k− 1 instead of just n and k
because MATLAB/Octave uses unit-offset arrays (indices 1..N). The inverse
transform is:

fn =
1

N

N∑
k=1

f̃k e
2πi(k−1)(n−1)/N . (2)

The frequency index k takes on N discrete values. Therefore arrays f and
f̃ contain an equal number of (in general, complex) elements. In principle,
there is no loss of information with the transform or its inverse. In practice,
there is roundoff error, as the following example demonstrates. The example
is also a good illustration of the DFT normalization (table 1).

octave:16> foo = [1, 2, 1, 0, -1, 0, -1, 3]

foo =

1 2 1 0 -1 0 -1 3

octave:17> foof = fft(foo)

foof =

Columns 1 through 3:

5.00000 + 0.00000i 5.53553 - 1.29289i 0.00000 + 1.00000i

Columns 4 through 6:

-1.53553 + 2.70711i -5.00000 + 0.00000i -1.53553 - 2.70711i

Columns 7 and 8:

0.00000 - 1.00000i 5.53553 + 1.29289i

octave:18> foo2 = ifft(foof)

2

foo2 =

Columns 1 through 5:

1.0000e+00 2.0000e+00 1.0000e+00 -2.2204e-16 -1.0000e+00

Columns 6 through 8:

-2.2204e-16 -1.0000e+00 3.0000e+00

2.2 DFT Properties

The DFT is useful because it possesses all the useful properties of the Fourier
transform. Some examples are listed in table 1. There also exist analogues
to the Fourier scaling, translation, differentiation and integration theorems.
Like the inverse, all of these hold exactly in the absence of roundoff error.

Table 1: Some properties of the DFT.
Normalization f̃0 =

∑
n fn

Symmetry real, even ⇐⇒ real, even
of transform imaginary, even ⇐⇒ imaginary, even

pairs real, odd ⇐⇒ imaginary, odd

Convolution DFT[f ∗ g] = f̃ g̃

DFT[fg] =
(

1
N

)
f̃ ∗ g̃

Correlation DFT[f ⊗ g] = f̃
∗
g̃

DFT
[
f
∗
g
]

=
(

1
N

)
f̃ ⊗ g̃

Parseval’s theorem
∑
n fn

∗
fn =

(
1
N

)∑
k f̃k

∗

f̃k

3 Being Discrete

Though the DFT works much like the Fourier transform, there are some
subtleties intrinsic to working with discrete data over a finite interval.

3.1 Finite Domain

Since the time domain is of finite extent, and the basis functions all satisfy
periodic boundary conditions over the domain, the DFT is really more like a

3

Fourier series than a Fourier transform. The time series fn is therefore treated
as if it corresponds to a periodic function. Consequently, a discontinuity (in
f or its derivatives) from fN to f1 can produce artifacts in f̃ . For this reason,
detrending and windowing are commonly used. See comments in §§ 4.2, ??,
and 5.

3.2 Nyquist Frequency

The shortest period that can be meaningfully represented in our time series
is 2 ∆t. This corresponds to k = N

2
+1. The corresponding highest frequency

is called the Nyquist frequency,

νc =
1

2 ∆t
. (3)

3.3 Arrangement of Frequencies

First-time users of the DFT may be surprised by the order in which the fre-
quencies are stored (figure 1). Where do the so-called “negative frequencies”
come from? We will see that this is a natural consequence of the definition
of the DFT.

The left half of the frequency diagram, from DC (zero frequency) to the
Nyquist frequency, looks reasonable. In physical units, the frequencies are
evidently

ν =
k − 1

N ∆t
. (4)

The Nyquist frequency (as we saw in the last section) occurs only about
halfway though the progression of frequencies. How can we physically inter-
pret a frequency “higher” than the Nyquist frequency? The range of interest
is

N

2
+ 1 < k ≤ N.

On the above range, let us use a new variable k′:

(k − 1) = N − (k′ − 1), 2 ≤ k′ <
N

2
+ 1

In terms of the new variable, the DFT is

f̃k =
N∑
n=1

fne
−2πi[N−(k′−1)](n−1)/N =

N∑
n=1

fne
−2πi[−(k′−1)](n−1)/N .

4

It is now evident that k′ represents a negative frequency, in direct analogy
to equation 4:

ν =
−(k′ − 1)

N ∆t
, −νc < ν < 0.

Note that the function e−iωt is orthogonal to eiωt. Therefore the negative
frequencies cannot be ignored in general. However, if the signal f is known to
be real-valued, then the information in the negative frequencies is redundant.
Questions for study:

1. For a positive frequency of index k, what is the index of the corre-
sponding negative frequency?

2. If f is real, and the Fourier coefficient f̃k is known, what is the Fourier
coefficient for the corresponding negative frequency?

3. Sketch the waveforms of the sine and cosine at the Nyquist frequency.
When these are sampled, can they both be measured?

4. Why is there only one coefficient in the DFT at the Nyquist frequency?
Does it correspond to a positive frequency, or a negative one?

Following is another simple example using Octave. In the first case, v
is a signal at the Nyquist frequency, but with a DC offset (mean value) of
1
2
. The transform therefore contains two Kronecker delta functions, one in

the first element and one in element 5. In the second part of the example,
the frequency is half the Nyquist frequency. Since the original signal is real,
the values in the positive frequency bins are complex conjugates of the cor-
responding negative frequency bins. The same symmetry is evident in the
example in § 2.1.

octave:1> v = [1,0,1,0,1,0,1,0]

v =

1 0 1 0 1 0 1 0

octave:2> f = fft(v)

f =

4 + 0i 0 + 0i 0 + 0i 0 + 0i 4 + 0i 0 - 0i 0 - 0i 0 - 0i

octave:3> v = [1,1,0,0,1,1,0,0]

5

k : 1 NN/2 + 1

Nyquist frequency

FFT elements 1...N :

positive frequencies negative frequencies

1 N

N -element data array:

2

2 ...

...n :

Figure 1: Arrangement of frequencies in the DFT of a time series with an
even number of elements. If there are an odd number of elements, the Nyquist
frequency is omitted.

v =

1 1 0 0 1 1 0 0

octave:4> f = fft(v)

f =

4 + 0i 0 + 0i 2 - 2i 0 + 0i 0 + 0i 0 - 0i 2 + 2i 0 - 0i

octave:5> v2 = ifft(f)

v2 =

1 1 0 0 1 1 0 0

3.4 Aliasing

A given sampling rate has limited bandwidth — a definite range of frequencies
that can be represented by the sampled data: |ν| < νc. Unfortunately, this
does not mean that a signal with a frequency outside this range will remain
undetected. In § 3.3, we saw that there is a correspondence between negative

6

frequencies and frequencies in the range νc < ν < 2νc. Figure 2 shows
explicitly how a frequency above the Nyquist cutoff will be aliased back into
the sampling passband.

sin
(
2π 3

4∆t
t
)

sin
(
2π −1

4∆t
t
)

Figure 2: Two signals sampled at interval ∆t. The sampled data, which are
identical, are circled by yellow-shaded circles. A frequency of ν = 3

4∆t
has

the same observational signature as ν ′ = −1
4∆t

.

It turns out that every frequency outside the passband gets aliased back
into the passband. The program given in Appendix B.1 is a numerical exper-
iment used to explore this mapping (figure 3). If you really understand the
example, then you will be able to predict how it would look if the complex
exponential in aliastest.m were replaced by a sine or a cosine.

3.5 Shannon’s Sampling Theorem

Any periodic function f(t) (or equivalently, a function defined only on the
interval 0 < t < T) can be represented as a Fourier series,

f(t) =
∞∑
k=1

ake
2πi(k−1)t/T .

Let us suppose that all we know of f(t) is its value at N evenly spaced points:

f(tn) = fn, tn =
n− 1

N
T, 1 ≤ n ≤ N.

Let us further suppose that

ak = 0 for k > N.

In other words, there are no frequencies in f above the Nyquist frequency.
This is the definition of a band-limited signal. Under this condition, there are

7

Figure 3: Aliasing of any frequency into the range |ν| < νc, as marked by the
dotted lines. The input signal is e2πiνt. The source code for this example is
in Appendix B.

only as many nonzero Fourier coefficients as there are data points. Indeed,
we note by comparison with equation 2 that ak = fk/N . It follows that we
can use the DFT (equation 1) to construct the exact Fourier series for f(t).
This demonstrates the validity of Shannon’s theorem:

If a function f(t) contains no frequencies higher than ν cycles per
second, it is completely determined by giving its values fn at a
series of points spaced ∆t = 1/(2ν) seconds apart.

The application of Shannon’s sampling theorem to interpolation is inves-
tigated in § 5.

8

4 Fast Fourier Transform (FFT)

The DFT as defined in equation 1 uses a sum of N terms to find fk for each
value of k. The whole transform (1 ≤ k ≤ N) therefore requires O(N2)
terms, each involving the evaluation of either a complex exponential or trig
functions. This is computationally daunting for large data sets.

4.1 The “Fast” Part

Fortunately, there exists a fast Fourier transform (FFT) algorithm that can
be completed in O(N logN) operations. Since the FFT is widely available in
every programming language, there is little point in dwelling on the details
(see Numerical Recipes, Ch. 12). The key points are

1. Factoring of N to split fn into smaller sub-arrays.

2. Combining the DFTs of the sub-arrays to form the DFT of the whole
array.

3. Clever use of multiple-angle formulae to minimize calls to trig functions.

This all works most efficiently if N is a power of 2.

4.2 FFT implementations

The only important qualities in an FFT implementation are speed, speed,
and speed. Well, OK, speed, versatility, and minimizing Roundoff error.
Appendix A briefly considers roundoff error because it can afflict practically
any sort of numerical computation.

There are many implementations of the FFT. Here are several that you
might encounter:

• Numerical Recipes Ch. 12 contains a simple FFT and several varia-
tions. The NR FFT is mainly a pedagogical tool, uses single precision
arithmetic, and is not especially versatile (N must be a power of 2).
Nevertheless, it would presumably work well enough for many applica-
tions.

9

• FFTW (the “Fastest Fourier Transform in the West,” see http://

www.fftw.org) was developed, somewhat ironically, at MIT.1 FFTW
is a highly optimized, open source package that is widely used.

• GNU Octave uses FFTW. Relevant functions include fft, ifft, and
fftw. Detrending and windowing are provided through functions such
as detrend, hanning, and hamming.

• MATLAB has its own proprietary FFT code that is well-optimized.

Many FFT implementations such as FFTW and Numerical Recipes leave
out the 1/N in the inverse, so that it is not quite the inverse. Although the
FFT requires O(N logN) operations, multiplication is more computationally
expensive than addition; therefore elimintating N multiplication operations
results in non-negligible time savings for some high performance tasks. Since
many FFT applications involve multiplying the transform by a filter func-
tion, it is most efficient to include the normalization as part of the filter
function. Although Octave uses FFTW, they have included the 1/N factor
(presumably for compatibility with MATLAB).

5 Application: Fourier Interpolation

Shannon’s theorem implies that a band-limited signal f(t) for which we have
N1 samples, fn, can be reconstructed exactly. All we need to do is supply
the higher frequency Fourier coefficients associated with measuring f(t) at
some higher resolution, N2 > N1. Since the signal is band-limited, this is a
trivial exercise: all the new Fourier coefficients will be zero! The algorithm
is simply:

1. Transform the time series fn to obtain f̃k.

2. Form an expanded transform, f̃ ′k, by snipping the array f̃k at the
Nyquist frequency, and inserting N2 −N1 zeros in the middle.

3. Inverse transform f̃ ′k to form the interpolated time series f ′n, which will
now have N2 elements.

1The FFTW website points out the MIT is west of Italy, the home of the spaghetti
western.

10

http://www.fftw.org
http://www.fftw.org

As a first example, look at figure 4. Recall that the DFT treats the time
series as periodic. The large change from fN to f1 is impossible to accommo-
date in a band-limited signal without ringing. What we must do is detrend
the data. The simplest way is to remove a linear trend with the right slope so
that the end data ponts are brought to the same level. After calculating the
interpolants, we will then add the linear trend that was removed. For this
purpose, the detrend function in Octave/MATLAB is unfortunately useless.
I have instead built a detrend algorithm into fstretch, my general purpose
FFT interpolation routine (§B.2). A better result using fstretch with de-
trending is shown in figure 5. The example script fstretchExample.m is in
Appendix B.3.

Figure 4: Fourier interpolation of data. The discontinuity between fN and
f1 causes ringing.

11

Figure 5: Fourier interpolation of detrended data.

A Roundoff Error

Roundoff error results from approximating real numbers with a finite number
of digits. As operations are performed, the roundoff error gradually accumu-
lates. Using our discrete Fourier transform as an example, suppose that we
have N = 108 samples, the signal is merely a constant, fn = 1, and the inter-
nal representation of the machine is good to about 7 significant figures (this
is roughly true of single precision floating point numbers; numerical codes
nearly always employ double precision—except Numerical Recipes !). When
we evaluate the first (zero frequency, k = 1) Fourier coefficient, it is simply

f̃1 =
N∑
n=1

1.

After the first 10 million terms, we will be adding 1 to approximately 10
million. Because of the limited precision however, 107 + 1 rounds to 107, and
all the remaining terms are similarly ignored. We end up adding 108 ones

12

to obtain only 107! A more realistic example would show a modest loss of
precision even for a smaller array at double precision. Fortunately, the FFT
tends to minimize roundoff error because it subdivides the data into small
segments and combines them hierarchically.

B Source Code

B.1 aliastest.m

N = 512; % Number of times, and of frequencies

minf = -2; % Minimum frequency (Nyquist=1)

maxf = 4; % Maximum frequency (Nyquist=1)

df = (maxf-minf)/N; % Frequency interval

window = hanning(N)*ones(1,N); % Apodization

freq = (0:N-1).*df + minf; % Frequency row vector (Nyquist=1)

t = (0:N-1)’; % Time column vector

freq_mat = ones(N,1) * freq;

% N x N array of frequencies, varying along the horizontal.

t_mat = t * ones(1,N);

% N x N array of times, varying along the vertical.

signals = exp(i * pi .* freq_mat .* t_mat);

% N x N array of signals, each column being a sinusoid

% at a particular frequency given by freq_mat.

signals_f = fft(window .* signals); % FFT of each column

signals_power = abs(signals_f).^2 ; % Power spectrum of each column

% Display the power spectra as an image.

hold off

imagesc(freq, (1:N), -signals_power); % minus sign inverts the image.

colormap(gray); % replaces the ugly default color table.

xlabel(’signal frequency (Nyquist=1)’,’fontsize’,20);

ylabel(’frequency bin in sampled data’,’fontsize’,20);

% Mark out the range of frequencies |f| < Nyquist

hold on

plot(ones(1,100), (1:(N-1)/99:N), "k.")

plot(-1.*ones(1,100), (1:(N-1)/99:N), "k.")

13

B.2 fstretch.m

% fstretch --- FFT-based signal interpolation

function [x2,y2] = fstretch(x1,y1,N2)

% Original data are (x1, y1). x1 is assumed to be uniformly spaced.

% (but note that only x1(1) and x1(n) are used).

% N2 is the size of the interpolated grid.

% y2 is the new (interpolated) y values.

% x2 is corresponding the new set of x values.

N1 = numel(y1);

if (N2 <= N1) % We can make the signal bigger, not smaller.

error(’Require N2 > N1.’)

endif

% Construct the new x-axis, x2

dx1 = (x1(N1) - x1(1))/(N1-1);

period = N1*dx1; % Note that this is larger than x1(N1)-x1(1).

dx2 = period/N2; % New sampling interval.

x2 = x1(1) + (0:N2-1)*dx2; % New x-axis

% Detrend the data

slope = (y1(N1) - y1(1))/((N1-1)*dx1);

trend1 = slope * dx1 * (0:N1-1);

y1d = y1 - trend1;

y1f = fft(y1d); % FFT of y1, which will supply parts for FFT of y2.

% Construct the FFT of the interpolated signal, y2

y2f = zeros(1,N2); % initialize blank FFT for y2

y2f(1:floor(N1/2+1)) = y1f(1:floor(N1/2+1));

% Frequencies 0 through Nyquist go to the first part of y2f.

y2f(N2-floor(N1/2-1):N2) = y1f(ceil(N1/2+1):N1);

% Frequencies from Nyquist to N go to the last part of y2f.

% In the case where N1 is odd, there is no element at Nyquist

% frequency; this case is handled above by floor() and ceil().

y2 = ifft((N2/N1)*y2f); % create y2 by the inverse transform.

% Reconstruct the original trend, rebinned for the newly interpolated

% data, and add it back in.

trend2 = slope * dx2 * (0:N2-1);

y2 = y2 + trend2; % Add the trend back in

14

B.3 fstretchExample.m

% A script to demonstrate Fourier interpolation with fstretch()

% Create coarsely sampled dataset

x1 = -10:0.5:10; % x data

y1 = x1./(1+x1.^2); % y data, using function y = x/(1+x^2).

N1 = numel(x1);

N2 = 7*N1+19; % Note that N2/N1 doesn’t have to be an integer.

[x2,y2] = fstretch(x1,y1,N2); % FFT interpolation

y2a = x2./(1+x2.^2); % True analytic function, for comparison

plot(x1,y1,’+k’, x2,y2a,’k’, x2,y2,’r’);

legend(’data’,’true’,’FFT interpolated’);

15

	Introduction
	Definition and Properties
	DFT and its Inverse
	DFT Properties

	Being Discrete
	Finite Domain
	Nyquist Frequency
	Arrangement of Frequencies
	Aliasing
	Shannon's Sampling Theorem

	Fast Fourier Transform (FFT)
	The ``Fast'' Part
	FFT implementations

	Application: Fourier Interpolation
	Roundoff Error
	Source Code
	aliastest.m
	fstretch.m
	fstretchExample.m

