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1 The Periodogram and Windowing

Several methods have been developed for the estimation of power spectra
from data (see Numerical Recipes, §§ 13.4,13.7-8). The simplest FFT esti-
mate of the power spectrum is called the periodogram (Numerical Recipes
eq. 13.4.5). The following example uses the periodogram technique, and
illustrates the need for windowing. The accompanying figures (1, 2, 3) cor-
respond to the three plots generated by the example.

% powerspec.m

% Periodogram Example

actual_f_bin = 1 + 13/2

% This will be the exact (non-integer) bin for the frequency.

% The 1+ is because Octave/Matlab arrays are unit offset.

% The second term is a frequency in in cycles per domain.

N = 200; % Number of bins

x = (0:N-1)*2*pi*(actual_f_bin - 1)/(N-1);

y = cos(x);

y2 = hanning(N)’ .* y;

figure(1)

hold off

plot(1:N, y, ’r’, 1:N, y2, ’k’);

xlabel(’x (spatial bin)’)

ylabel(’signal y(x)’)

legend(’raw data’,’windowed’)

%axis([1,N])
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print(’powerspec1.pdf’,’-dpdfwrite’)

yf = fft(y);

y2f = fft(y2);

ps = abs(yf).^2;

ps2 = abs(y2f).^2;

figure(2)

hold off

normalization = sum(y.^2)/sum(y2.^2)

plot(ps,’r’)

hold on

plot(normalization*ps2,’k’);

xlabel(’k (spectral bin)’)

ylabel(’power spectrum’)

legend(’Raw power spectrum’,’PS of windowed data’)

axis([1,N,0,max(ps)])

print(’powerspec2.pdf’,’-dpdfwrite’)

figure(3)

hold off

plot(ps(1:20),’r’)

hold on

plot(normalization*ps2(1:20),’k’);

hold on

xlabel(’k (spectral bin)’)

ylabel(’power spectrum’)

plot(actual_f_bin*[1,1], [0,1.1*max(ps2*normalization)],’b-’);

centroid = sum( ps(1:20).*(1:20) )./sum( ps(1:20))

centroid2 = sum( ps2(1:20).*(1:20) )./sum(ps2(1:20))

plot(centroid*[1,1], [0,1.1*max(ps2*normalization)],’r--’);

plot(centroid2*[1,1], [0,1.1*max(ps2*normalization)],’k--’);

legend(’Raw power spectrum’,’PS of windowed data’,’Exact signal frequency’,’Raw PS centroid’,’Windowed PS centroid’)

axis([1,20,0,max(ps)])

print(’powerspec3.pdf’,’-dpdfwrite’)

The example calculates the power spectrum using the FFT with and
without windowing (in optics and image processing, the customary term is
apodization). The Octave/MATLAB function hanning(N) produces an N -

element array of the form 1
2

[
1− cos

(
2π(n−1)
N−1

)]
. As you can see in figure 1,

this eliminates the wraparound discontinuity of the data. Since the Hanning
window is a smooth function with a broad peak, its only side effect is that
the FFT of the windowed data will be smoothed (convolved with the Fourier
transform of the window, which is itself a narrow, peaked function). Without
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Figure 1: The signal and its hanning-windowed counterpart.

the windowing, there is a 1/ν2 tail artifact in the power spectrum; this is
eliminated in the power spectrum of the windowed data, at the expense of
broadening the peak (figures 2 & 3).

2 Repeatability and Uncertainty

Often, we are looking for the power spectrum of some stochastic phenomenon,
like the avalanche effect in a diode or the pattern of waves on the surface of
the ocean. In cases like this, the periodogram is merely an estimate of the
true power spectrum. Sampled data misses what came before the sampled
interval, what came after, and what came in between the samples. Ideally,
we would measure the signal over an infinite interval of time, at infinitesimal
sampling period. But it turns out that once we have a high enough sampling
frequency and a long enough duration to catch the frequencies of interest,
getting more data only adds noise to the periodogram. Numerical Recipes
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Figure 2: The power spectrum of the signal and its hanning-windowed coun-
terpart.

asserts that the standard deviation of the periodogram at any frequency is
equal to its mean (100% error!). This does not change as N increases (the
periodogram reaches for higher spectral resolution rather than tightening up
the error bars). One solution to this problem is to partition the data into
many segments. The optimal information per data point is obtained when
the second half of each segment overlaps the first half of the next segment.
Question: What assumptions underlie the 100% error estimate given by
Numerical Recipes?

3 Example

Begin by reviewing the following codes.
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Figure 3: Same as the previous figure, but zoomed in. The periodogram
calculated from the raw data has tails that fall off like 1/k due to the dis-
continuity across the domain boundary. Vertical lines compare estimates of
the signal frequency. The Hanning window offers a marked improvement in
frequency estimation and eliminates the 1/k tails.

3.1 Power spectral estimation code

% spectrum.m

function [powerspec,frequency] = spectrum(filename, N, dt)

% Power spectral estimation by partitioning and windowing. The program is

% able to analyze data sets larger than memory by processing a binary stream.

% Big-Endian ieee floating point numbers (32 bits) are assumed.

% Binary file given by filename is read in chunks of N floats,

% assumed big-Endian. Power spectrum is built 2N samples at a time.

% The sampling period is optionally given by dt.

%

% CCK 2017-Feb-09 ported to Matlab (now runs in both Matlab & Octave).
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if (exist(’dt’) ~= 1) dt=1.0;

end

window = ( 1 - cos( 2*pi*(1:(2*N))/(2*N) ) ) / 2; % Hann window

frequency = (0:N) / (2*N*dt); % Convenient frequency axis

% (cycles per unit time, with same time units as dt).

% Note that only the DC, postive, and Nyquist frequencies are represented here;

% negative frequencies are redundant.

coeffs2 = zeros(1,2*N); % Create empty array for squared Fourier coefficients

datafile = fopen(filename,"r");

% (We now need a do-until loop, which exists in Octave and has finally

% been added to MATLAB, but unfortunately with a different syntax. The

% following code, while slightly awkward, should work in both languages.)

M=0;

while (1)

[chunk, count] = fread(datafile, [1,N], "float", "ieee-be");

if (count ~= N) break; end;

if (exist(’lastchunk’) == 1)

coeffs2 = coeffs2 + abs( fft(window.*[lastchunk,chunk]) ).^2;

% matlab lacks +=.

end

lastchunk = chunk;

M=M+1;

end

stdout = 1; % Octave defines this constant by default.

fprintf(stdout, "%u chunks of %u floats, remainder %u loaded from file: %s \n", M, N, count, filename);

powerspec = coeffs2(1:N+1)/(2*M*N)^2;

% DC thru Nyquist frequency.

fclose(datafile);

3.2 Example time series

% timeseries4.m

%

% Produce a time series in M chunks of size N, containing 2 sinusoidal

% signals and some noise. Save as a binary file of floats (datafile.bin).

% Takes about 40s to write 1GB (timeseries(1024,1024*256)), 2014-Jan.

%

% CCK 2017-Feb-09 ported to Matlab (now runs in both Matlab & Octave).
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function timeseries(M,N, SNR)

% The optional argument SNR specifies the signal-to-noise ratio

% (default = 1.0).

if ( exist("SNR") ~= 1 ) SNR = 1.0; end

% Physical characteristics of signal

e = exp(1); % Matlab lacks this constant, which is standard in Octave.

M % number of chunks

N % chunk size

SNR % signal-to-noise ratio

A = 1.0 % amplitude (V)

T = e % period (s)

freq = 1/T % frequency (Hz)

freq2 = e*freq % second signal

dt = 0.25 % sampling time (s)

% Physical characteristics of noise

sigma = A / sqrt(SNR * 2) % standard deviation (V)

mean = 0.0; % mean (V)

fileID = fopen("datafile.bin","w")

phasenoise=0; % initialize

noise_old=0; % initialize

for i=0:(M-1)

t = dt*( (0:(N-1)) + i*N);

chunk = A/sqrt(2) * sin(2 * pi * freq * t); % signal 1

% phasenoise = phasenoise(end) + cumsum( normrnd(0,freq2*dt,1,N) );

phasenoise = phasenoise(end) + cumsum( freq2*dt*randn(1,N) );

% phase changes in a random walk freq2*dt radians per time step. After n steps,

% the expectation value of the phase change is <phi> = sqrt(n) * freq2*dt.

% The coherence time, tau, is the time at which <phi> = pi/2,

% which leads to tau = n*dt = dt * ( pi / (2*freq2*dt) )^2 = 9.9 sec.

chunk = chunk + A/sqrt(2) * cos(2 * pi * freq2 * t + phasenoise);

%noise = normrnd(mean, sigma, 1, N); % noise

noise = mean + sigma * randn(1, N); % noise

noise = noise + 0.9*[noise_old(end), noise(1:end-1)]; % redden the noise

chunk = chunk + noise;

noise_old = noise;

fwrite(fileID, chunk, "float", "ieee-be");

end

fclose(fileID);

7



3.3 Script to run the example and produce figures

% timeseries4test.m

% Test of spectrum.m using timeseries4.m

%

% CCK 2017-Feb-09 ported to Matlab (now runs in both Matlab & Octave).

M=1000; % Number of chunks

N=1024; % Chunk size

dt = 0.25; % To agree with timeseries4.m

SNR=10;

timeseries4(M, N, SNR);

dt = 0.25;

fileID = fopen("datafile.bin","r");

signal = fread(fileID, M*N, "float", "ieee-be");

time = dt*(0:(M*N - 1));

figure(1)

hold off

plot(time(1:2*N), signal(1:2*N), "-b")

xlabel(’time (s)’)

ylabel(’signal (V)’)

figure(2)

hold off

[spec, frequency] = spectrum("datafile.bin", M*N/2, dt);

semilogy(frequency, spec,’r’)

hold on

[spec, frequency] = spectrum("datafile.bin", N, dt);

plot(frequency, spec,’b’)

xlabel(’frequency (Hz)’)

ylabel(’power spectrum’)

axis([0,frequency(end),min(spec),max(spec)*10])

3.4 In-class exercise

1. Run timeseries4test.m, and examine the plots.

2. Do you see the “100% error” in the ordinary periodogram (red)?

3. Does averaging many partitions help:

(a) Estimation of the red noise spectrum?

(b) Determination of the line shape for the peak broadened by phase
noise?
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(c) Frequency estimation for the 0.36788 Hz peak?

4. Discuss the implications for power spectral analysis of resolved and
unresolved spectral features.

It generally helps to increase spectral resolution when looking at unre-
solved peaks. But with well-resolved features like the red noise and the
broadened peak in the above example, better power spectral estimation is
obtained by averaging many windowed partitions.
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